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Abstract

Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous
incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The
immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally
introduced to study blood flow through heart valves, and extensions of this work have yielded a three-dimensional model of
the heart and great vessels. In the present work, we introduce a new adaptive version of the immersed boundary method.
This adaptive scheme employs the same hierarchical structured grid approach (but a different numerical scheme) as the two-
dimensional adaptive immersed boundary method of Roma et al. [A multilevel self adaptive version of the immersed bound-
ary method, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, 1996; An adaptive version of
the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509–534] and is based on a formally second order accurate
(i.e., second order accurate for problems with sufficiently smooth solutions) version of the immersed boundary method that
we have recently described [B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher
order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75–105]. Actual second order con-
vergence rates are obtained for both the uniform and adaptive methods by considering the interaction of a viscous incom-
pressible flow and an anisotropic incompressible viscoelastic shell. We also present initial results from the application of this
methodology to the three-dimensional simulation of blood flow in the heart and great vessels. The results obtained by the
adaptive method show good qualitative agreement with simulation results obtained by earlier non-adaptive versions of the
method, but the flow in the vicinity of the model heart valves indicates that the new methodology provides enhanced bound-
ary layer resolution. Differences are also observed in the flow about the mitral valve leaflets.
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1. Introduction

Many problems in biofluid mechanics can be modeled as the dynamic interaction of a viscous incompress-
ible fluid and a (visco-)elastic structure. One example is cardiac mechanics. In the approach of Peskin and
McQueen [4–9], the blood is modeled as a viscous incompressible fluid, whereas the muscular heart wall is
modeled as a thick viscoelastic structure with time-dependent elastic parameters, and the flexible heart valve
leaflets are modeled as thin elastic boundaries. The immersed boundary method is a mathematical formulation
and numerical approach to such problems originally introduced by Peskin to study blood flow through heart
valves [10,11]. In the immersed boundary formulation of problems involving the interaction of a viscous
incompressible fluid and an incompressible elastic or viscoelastic structure, the configuration of the elastic
structure is described by Lagrangian variables (i.e., variables indexed by a coordinate system attached to
the elastic structure), whereas the momentum, velocity, and incompressibility of the coupled fluid–structure
system are described by Eulerian variables (i.e., in reference to fixed physical coordinates). In the continuous
equations of motion, these two descriptions are connected by making use of the Dirac delta function, whereas
a smoothed approximation to the delta function is used to link the Lagrangian and Eulerian descriptions when
the continuous equations are discretely approximated for computer simulation.

Simulating fluid–structure interaction by the immersed boundary method requires the use of high spatial
resolution; however, in many cases, this requirement is somewhat localized to the flow in the neighborhood
of the immersed boundaries [1,2]. For the flow away from the immersed boundaries, the need for high spatial
resolution is somewhat lessened, although it may be needed in regions of high vorticity, e.g., in the neighbor-
hood of vortices that have been shed from the boundaries and have subsequently moved away from the
boundaries into the interior of the flow. If a uniform grid is employed to discretize the (Eulerian) equations
of motion for such simulations, the fine grid spacing required to resolve the flow near the immersed boundaries
is necessarily employed throughout the entire computational domain, even in regions that may not require
such high resolution. By employing an adaptive discretization of the equations of motion, high spatial reso-
lution can be deployed locally where it is most needed, whereas comparatively coarse resolution can be
employed where it suffices. In principle, such an adaptive scheme would allow for more efficient utilization
of computational resources when compared to non-adaptive strategies, although realizing such gains in prac-
tice requires the careful design and implementation of a number of algorithms and data structures.

An adaptive version of the immersed boundary method was first introduced in the Ph.D. thesis of Roma [1]
and the subsequent work of Roma et al. [2]. In this earlier work, the hierarchical structured grid approach of
Berger and Oliger [12] and Berger and Colella [13] was employed to introduce local spatial refinement in the
Eulerian grid in the vicinity of an immersed elastic interface. The simulated dynamics produced by this adap-
tive version of the immersed boundary method were demonstrated to be virtually identical to those obtained
by a non-adaptive method that employed a uniform grid with the same spatial resolution as that of the finest
grid level in the adaptive computation. That is to say, despite the fact that the adaptive computation only
deployed high spatial resolution in a localized region about the elastic interface, the adaptive results were
not significantly different from those obtained by a non-adaptive method that employed a uniformly fine
Cartesian grid.

In the present work, we describe a new adaptive version of the immersed boundary method for problems of
fluid–structure interaction, provide empirical convergence results that demonstrate the accuracy of this
method for a two-dimensional model problem, and present initial results from the application of this adaptive
methodology to the three-dimensional simulation of cardiac fluid mechanics. The present adaptive method is
based upon a non-adaptive, formally second order accurate version of the immersed boundary method
recently described by Griffith and Peskin [3]. Like the uniform grid algorithm upon which it is based, this
new adaptive version of the immersed boundary method is formally second order accurate in the sense that
the method is expected to converge at its formal order of accuracy only for problems that possess sufficiently
smooth solutions. The present adaptive algorithm employs the same hierarchical structured grid approach
(but a different numerical scheme, see below) as that used by Roma, Peskin, and Berger to discretize the Eule-
rian equations of motion (i.e., the incompressible Navier–Stokes equations). Unlike the method of Roma
et al., the present algorithm employs a fully explicit treatment of the Lagrangian equations of motion (i.e.,
the equations that specify the evolution of the configuration of the elastic structure). In particular, in an
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attempt to reduce the occurrence of non-physical oscillations in the computed dynamics, we employ a strong
stability-preserving Runge–Kutta method [14] for the time integration of the Lagrangian equations of motion.
The present method differs more dramatically from the approach of Roma et al. in the details of its treatment
of the Eulerian equations of motion, namely the incompressible Navier–Stokes equations. Although both
adaptive schemes employ projection methods to solve the incompressible Navier–Stokes equations, the pres-
ent work employs a cell-centered projection method that makes use of an implicit L-stable discretization of the
viscous terms [15,16] and a second order Godunov method for the explicit treatment of the nonlinear advec-
tion terms [17–20]. Generally speaking, projection methods [21–23] are a class of fractional step algorithms for
incompressible flow problems that update the velocity by first solving the momentum equation over a time
interval without imposing the constraint of incompressibility. Doing so yields an intermediate velocity field
that is generally not divergence free. The true updated velocity is then obtained by solving a Poisson problem
to enforce the incompressibility constraint. More abstractly, this process projects the intermediate velocity
onto the space of divergence free vector fields.

In an ‘‘exact’’ projection method, the discrete divergence of the updated velocity is identically zero (or zero
to within the tolerance of the linear solver in practice). Even on uniform grids, however, exact cell-centered
projections present difficulties. For example, on a periodic grid with an even number of grid cells in each coor-
dinate direction, an exact projection operator possesses a non-trivial nullspace that causes the pressure to
decouple into 2d subfields, where d is the number of spatial dimensions. To date, it appears that exact cell-cen-
tered projections have not been successfully implemented for co-located cell-centered velocities defined on
hierarchically composed locally refined grids (i.e., such as those used in the present work). Like most recent
projection methods for locally refined grids [19,20,24], the present scheme employs a projection method that
is not exact but rather is ‘‘approximate’’ in the sense that the discrete divergence of the velocity only converges

to zero at a second order rate as the composite computational grid is refined. (Note that unlike exact projection
methods, approximate projection methods typically yield a fully coupled pressure field on both uniform and
locally refined grids.) When such methods are used with the immersed boundary method, we have found that it
is beneficial to determine the updated velocity and pressure in terms of the solutions to two different approx-
imate projection equations at each timestep. This so-called hybrid approach was originally proposed by Alm-
gren et al. for simulating inviscid incompressible flow [25]. Our hybrid projection algorithm, which we first
detailed in the non-adaptive context [3], is essentially an extension of their inviscid hybrid method (‘‘version
5’’) to the viscous case. The adaptive version of our projection method is also similar to earlier adaptive invis-
cid schemes described by Minion [19] and Martin and Colella [20]; however, note that we employ a somewhat
different discretization at interfaces in grid resolution. In particular, for two-dimensional locally refined grids,
we employ finite difference discretizations of the gradient and Laplace operators that were introduced by
Ewing et al. [26], and in three spatial dimensions, we make use of a straightforward generalization of their
approach. Note, however, that Ewing et al. consider only the issue of the accurate discretization of second-
order elliptic equations on locally refined grids, not the solution of the incompressible Navier–Stokes equa-
tions. To our knowledge, this is the first application of their discretization approach to the simulation of
incompressible flows. We believe that this particular treatment is more easily implemented than the
approaches of e.g. [19,20,24]. Moreover, this treatment also appears to yield a globally second order accurate
projection method [27]. As this approach could be useful in other application areas that require the adaptive
simulation of incompressible flows, we include a complete description of the interpolation and finite difference
operators that we employ in our cell-centered adaptive projection method for both two- and three-dimensional
locally refined grids.

As in our earlier uniform grid study [3], actual second order numerical convergence rates are observed when
our adaptive immersed boundary method is used to simulate the interaction of a viscous incompressible fluid
and a viscoelastic shell (i.e., a body which, although thin, is not infinitely thin). As was first done in [3], we
again consider the accuracy of the immersed boundary method for anisotropic incompressible viscoelastic
shells with two sets of elastic properties. In the first case, the stiffness of the shell tapers to zero at its edges,
so that there is a continuous transition in material properties between the fluid and the structure. We also con-
sider the case in which the stiffness of the shell is constant, so that there is a sharp discontinuity in the material
properties of the coupled system at the fluid–structure interface. At least for the moderate Reynolds number
flows considered here, the dynamics generated by the adaptive scheme are virtually identical to those gener-



B.E. Griffith et al. / Journal of Computational Physics 223 (2007) 10–49 13
ated by a non-adaptive method which employs a uniformly fine Cartesian grid. Moreover, for each set of
material properties considered, the true solution appears to be sufficiently regular for the adaptive method
to converge at or near its formal order of accuracy as the computational grids are refined. (Although the pres-
ent version of the immersed boundary method has not been validated for standard fluid–structure interaction
problems such as flow past a cylinder, note that such a validation study has been performed by Lai and Peskin
with a similar formally second order accurate (but non-adaptive) method [28,29]. In particular, note that this
earlier version of the immersed boundary method was found to generate the experimentally correct Strouhal
number over a range of Reynolds numbers in which St is in fact varying as a function of Re.)

In addition to convergence results in two spatial dimensions, we also present initial results from the appli-
cation of this adaptive methodology to McQueen and Peskin’s three-dimensional model of cardiac mechanics.
The results obtained by the adaptive method show good qualitative agreement with results obtained by earlier
versions of the immersed boundary method [7–9]. In particular, in the present simulation as in earlier simu-
lations, a prominent vortex is shed from the mitral valve leaflets and migrates to the interior of the left ven-
tricle prior to ventricular systole (i.e., ventricular contraction). Similarly, as was observed in earlier
simulations, a prominent right-ventricular vortex is shed from the tricuspid valve leaflets prior to ventricular
systole. There are also notable differences, however, between the results obtained by the present version of the
immersed boundary method and those obtained by earlier versions of the method. For instance, the flow in the
vicinity of the model heart valves indicates that the new methodology provides dramatically enhanced bound-
ary layer resolution. Differences are also observed in the flow in the vicinity of the mitral valve. In the present
simulation, there is an additional left-ventricular vortex that swirls about the jet of inflow from the mitral
valve prior to ventricular contraction. This particular feature of the flow was not observed in earlier simula-
tions, and its physiological significance, if any, is presently unknown. We also present parallel code timing
results that demonstrate that our adaptive strategy substantially reduces the computing resources required
to simulate cardiac fluid mechanics.

2. The continuous equations of motion

Consider a system comprised of a viscoelastic structure immersed in a viscous incompressible fluid. We
assume that the fluid has uniform density, q, and uniform dynamic viscosity, l. The structure is taken to
be incompressible and neutrally buoyant, and the viscous properties of the structure are assumed to be those
of the fluid in which it is immersed. Consequently, the momentum, velocity, and incompressibility of the cou-
pled system can be described by the incompressible Navier–Stokes equations, augmented by an appropriately
defined body force. (Even in the more complicated case in which the mass density of the structure differs from
that of the fluid, the momentum, velocity, and incompressibility of the coupled system can still be described by
the incompressible Navier–Stokes equations; see [30–32]. The case in which the viscosity of the structure differs
from that of the fluid can also presumably be done by a generalization of the methods proposed here, but this
has not yet been attempted.)

The immersed boundary formulation of this problem employs an Eulerian description of the velocity and
incompressibility of the fluid–structure system and a Lagrangian description of the configuration of the
immersed elastic structure. In particular, the velocity of the entire coupled system is described in terms of
an Eulerian velocity field, u(x, t), where x = (x,y,z) are fixed physical (Cartesian) coordinates, whereas the
configuration of the immersed elastic structure is described in terms of a curvilinear coordinate system. (It
is important to emphasize that u(x, t) refers to the velocity of whichever material is physically located at posi-
tion x at time t. The same will be true for all of the Eulerian variables, including the pressure and the (Carte-
sian) elastic force density.) Let (q, r, s) be material curvilinear coordinates attached to the elastic structure so
that fixed values of (q, r, s) label a material point for all time t, with X(q, r, s, t) referring to the Cartesian posi-
tion of such a material point at time t. The physical domain consists of a region U � R3. For simplicity, we
presently take U to be the unit cube and impose periodic boundary conditions. The curvilinear coordinates are
restricted to some region of (q, r, s)-space, here denoted X � R3. The configuration of the elastic structure at
time t is denoted by X(Æ, Æ, Æ,t), and the curvilinear force density (i.e., the density with respect to (q, r, s)) gener-
ated by the elasticity of the structure is determined by a possibly time-dependent mapping from X(Æ, Æ, Æ, t), the
structure configuration at time t, to the elastic force density at time t, denoted F(Æ, Æ, Æ, t).
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The equations of motion for the system can be written in the following form:
q
ou

ot
þ ðu � rÞu

� �
þrp ¼ lr2uþ f; ð1Þ

r � u ¼ 0; ð2Þ

fðx; tÞ ¼
Z

X
Fðq; r; s; tÞdðx� Xðq; r; s; tÞÞ dq dr ds; ð3Þ

oX

ot
ðq; r; s; tÞ ¼ uðXðq; r; s; tÞ; tÞ ¼

Z
U

uðx; tÞdðx� Xðq; r; s; tÞÞ dx; ð4Þ

Fð�; �; �; tÞ ¼F½Xð�; �; �; tÞ; t�: ð5Þ
Eqs. (1) and (2) are the incompressible Navier–Stokes equations written in Eulerian form, where p(x, t) is the
pressure and f(x, t) is the (Cartesian) elastic force density. Eq. (5) formalizes the assumption that the curvilin-
ear elastic force density, F(Æ, Æ, Æ, t), is determined by a possibly time-dependent mapping of the structure con-
figuration, X(Æ, Æ, Æ, t). (By permitting the mapping F to be explicitly time-dependent, we allow for the case in
which the (active) structure can do net work on the fluid as it moves through a cycle in configuration space. An
example of this is the cardiac cycle, in which the heart does net work on the blood during each heartbeat.)

Eqs. (3) and (4) describe the interaction between the Lagrangian and Eulerian variables. In both equations,
the three-dimensional Dirac delta function, d(x) = d(x)d(y)d(z), appears as the kernel of an integral transform
that facilitates conversions between Eulerian and Lagrangian quantities. Eq. (3) converts the curvilinear force
density into the Cartesian force density. Note that the numerical values of the Cartesian and curvilinear elastic
force densities are generally not equal at corresponding points. Nevertheless, f and F are equivalent as densi-

ties. Recalling the defining property of the Dirac delta function,
Z
V

dðx� XÞ dx ¼
1 if X 2 V ;

0 otherwise;

�
ð6Þ
where V � U is an arbitrary region of physical space, we see that the densities are indeed equivalent via
Z
V

fðx; tÞ dx ¼
Z

V

Z
X

Fðq; r; s; tÞdðx� Xðq; r; s; tÞÞ dq dr ds dx

¼
Z

X
Fðq; r; s; tÞ

Z
V

dðx� Xðq; r; s; tÞÞ dx

� �
dq dr ds ¼

Z
X�1ðV ;tÞ

Fðq; r; s; tÞ dq dr ds;
where
X�1ðV ; tÞ ¼ fðq; r; sÞjXðq; r; s; tÞ 2 V g: ð7Þ

Note that another way to express f is by
fðXðq; r; s; tÞ; tÞ Jðq; r; sÞ ¼ Fðq; r; s; tÞ; ð8Þ

where J(q, r, s) denotes the Jacobian determinant of the coordinate transformation (q, r, s) ´ X(q, r, s, t). Thus
it is easy to see that although f and F are equivalent densities, their pointwise values will not generally be equal,
i.e., f(X(q, r, s, t),t) 6¼ F(q, r, s, t). (Note that J(q, r, s) is time-independent as a consequence of the assumption
that the material is incompressible.)

The second of the interaction equations, Eq. (4), relates the material velocity of the elastic structure to the
Eulerian velocity field for the coupled system. Since u(x, t) is the velocity of whichever material is physically
located at position x at time t, for any (q, r, s) 2 X,
oX

ot
ðq; r; s; tÞ ¼ uðXðq; r; s; tÞ; tÞ: ð9Þ
As long as u is continuous, we may evaluate the velocity at X(q, r, s, t) by making use of the delta function,
uðXðq; r; s; tÞ; tÞ ¼
Z

U
uðx; tÞdðx� Xðq; r; s; tÞÞ dx: ð10Þ
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For the coupled system, continuity of the velocity field follows from the presence of viscosity in both the fluid
and the structure.

Before concluding this section, we mention the particular elastic force density mapping that is used in the
present work. Suppose that the immersed elastic structure consists of a continuous collection of elastic fibers,
where the material coordinates (q, r, s) have been chosen so that a fixed value of the pair (q, r) labels a partic-
ular fiber for all time. Let s denote the unit tangent vector in the fiber direction,
s ¼ oX=os
joX=osj : ð11Þ
Since the fibers are elastic, the fiber tension, T, is related to the fiber strain, which is determined by joX/osj. The
fiber tension can be expressed by a generalized Hooke’s law of the form
T ¼ rðjoX=osj; q; r; sÞ: ð12Þ

One can show [7,30] that the corresponding curvilinear elastic force density can be put in the form
F½Xð�; �; �; tÞ; t� ¼ o

os
ðT sÞ: ð13Þ
Since T and s are both defined in terms of oX/os, F is a mapping from the structure configuration to the cur-
vilinear force density, F(Æ, Æ, Æ, t).

The formulation described above allows for some regions of the physical domain to be occupied only by
fluid and for other regions to be occupied by viscoelastic material. At least in the present formulation, it is
important to note again that many of the properties of the incompressible viscoelastic material, including
its density and viscosity, are identical to those of the surrounding fluid. Thus, another way of viewing the fore-
going formulation is that the viscoelastic material is an idealized composite material with a viscous incompress-
ible fluid component (the properties of which are described in Eulerian form) and an elastic fiber component
(the properties of which are described in Lagrangian form). From this point of view, the sole purpose of the
fibers is to provide a Lagrangian description of the additional elastic stresses that are present in the viscoelastic
material. These stresses are characterized by the elastic force density, F(Æ, Æ, Æ, t), as a function of the material
configuration, X(Æ, Æ, Æ, t). Note that when written in Eulerian form, the stress tensor of such a composite mate-
rial is given by
r0ij ¼ �pdij þ l
oui

oxj
þ ouj

oxi

� �
þ T 0sisj; ð14Þ
where p is the pressure, dij is the Kronecker delta, l is the viscosity, u = (u1,u2,u3) is the velocity, x = (x1,x2,x3)
are (Cartesian) physical coordinates, T 0 is the fiber tension, and s = (s1,s2,s3) is the unit tangent to the fibers.
It is important to note that the Eulerian fiber tension, T 0, is different from the Lagrangian fiber tension, T,
defined in Eq. (12). In particular, T 0(x, t) is the elastic force per unit cross-sectional area of composite material,
whereas T(q, r, s, t) dq dr is the force transmitted by dq dr, a fiber patch. It can be shown that T 0 and T are
related by
T 0ðXðq; r; s; tÞ; tÞ ¼ joX=osj
Jðq; r; sÞ T ðq; r; s; tÞ; ð15Þ
where, as before, J(q, r, s) denotes the Jacobian determinant of the coordinate transformation
(q, r, s) ´ X(q, r, s, t). (See [4] for a derivation of this relationship between T 0 and T.)

3. The discrete equations of motion

In the immersed boundary approach to fluid–structure interaction problems, the solution to the continuous
equations of motion, (1)–(5), is approximated by discretizing the Eulerian equations on a Cartesian grid and
by discretizing the Lagrangian equations on a discrete lattice in the curvilinear coordinate space. The present
work extends the uniform grid method of [3] to provide an adaptive discretization of the Eulerian equations of
motion (i.e., the incompressible Navier–Stokes equations). In particular, rather than using a uniform
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Cartesian grid to discretize the physical domain, U, we employ a hierarchy of nested Cartesian grids with suc-
cessively finer mesh spacings. Before describing this locally refined discretization of the Eulerian equations of
motion, however, we first summarize the spatial discretization of the Lagrangian equations.

Note that when no local refinement is deployed, the following numerical scheme reduces to the method
described in [3]. Rather than providing a summary of the uniform grid scheme, we instead refer the interested
reader to [3,27] for a presentation of the non-adaptive methodology. Additionally, note that Sections 3.2–3.4,
3.7, 3.8 provide a rather complete description of the particular adaptive projection method that we have devel-
oped. Although this algorithm is described in the context of the immersed boundary method, we expect that it
could be useful in other application areas where local refinement is desirable.

3.1. The Lagrangian spatial discretization

The curvilinear coordinate space is discretized on a fixed lattice in (q, r, s)-space with uniform meshwidths
(Dq,Dr,Ds). Unless otherwise noted, from now on the curvilinear coordinate indices (q, r, s) will refer to the
nodes of the curvilinear computational lattice, so that
ðq; r; sÞ ¼ ðq0; r0; s0Þ þ ðmqDq;mrDr;msDsÞ ð16Þ

for fixed constants q0, r0, and s0 and integer values of mq, mr, and ms.

For a Lagrangian quantity defined on the curvilinear mesh (i.e., in the present work, X or F), we employ the
notation Xn(q, r, s) ” X(q,r,s,tn), where tn is the time of the nth timestep. The timestep size is implicitly defined
by Dtn = tn+1 � tn, although we generally employ a fixed uniform timestep Dt. Note that some quantities will
be defined at ‘‘half-timesteps,’’ tnþ1

2
¼ tn þ 1

2
Dtn.

Although the lattice used to discretize the curvilinear coordinate space is fixed throughout a particular sim-
ulation, it is important to note that the physical locations of the nodes of the curvilinear mesh,
Xn(q, r, s) ” X(q, r, s, tn), are free to move throughout the physical domain. In particular, the physical positions
of the nodes of the curvilinear mesh are in no way required to conform to the locally refined Cartesian grid
described in Section 3.2. By contrast, as we describe below, the Cartesian grid is required to adapt to the evolv-
ing configuration of the curvilinear mesh since we deploy local refinement in the vicinity of the elastic structure.

Recall that the continuous version of the elastic force density that we employ in the present work is given by
Eqs. (11)–(13). To approximate this force density on the curvilinear computational lattice, we introduce a
finite difference approximation to differentiation in the s curvilinear coordinate direction, defined by
ðDsWÞðq; r; sÞ ¼
W q; r; sþ 1

2
Ds

� �
�W q; r; s� 1

2
Ds

� �
Ds

; ð17Þ
where W(q, r, s) is a function defined on the curvilinear computational lattice.
Given a structure configuration, X(Æ, Æ, Æ), the unit tangent vector, (11), is approximated at ‘‘half-integer’’

multiples of Ds by
s q; r; sþ 1

2
Ds

� �
¼
ðDsXÞ q; r; sþ 1

2
Ds

� �
ðDsXÞ q; r; sþ 1

2
Ds

� ��� �� : ð18Þ
Similarly, the fiber tension, (12), is approximated by
T q; r; sþ 1

2
Ds

� �
¼ r ðDsXÞ q; r; sþ 1

2
Ds

� �����
����; q; r; sþ 1

2
Ds

� �
: ð19Þ
Finally, Eqs. (18) and (19) may be used to approximate the curvilinear elastic force density, (13), at integer
multiples of Ds by
Fðq; r; sÞ ¼ ðDsðT sÞÞðq; r; sÞ: ð20Þ

Note that the half-integer multiples of Ds that appear in the foregoing are only intermediate values. In the end,
the evaluation of (20) at the nodes of the curvilinear computational lattice requires only the values of X(q, r, s)
at the nodes of the lattice, i.e., for (q, r, s) = (q0, r0, s0) + (mqDq,mrDr,msDs) for fixed constants q0, r0, and s0

and for integer values of mq, mr, and ms.
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3.2. Hierarchical structured Cartesian grids

In the present work, the physical domain, U, is taken to be the periodic unit cube (or, in Section 4, the periodic
unit square). The locally refined Cartesian grid that is used to discretize U is composed of the union of rectan-
gular grid patches that are organized into a sequence of patch levels. We shall frequently refer to the collection of
patch levels as the patch hierarchy, or simply the hierarchy. The levels are numbered ‘ = 0, . . . ,‘max, where ‘ = 0
indicates the coarsest level in the hierarchy and ‘ = ‘max indicates the finest level. All of the patches in level ‘
share the same grid spacings, (Dx‘,Dy‘,Dz‘), although for the purposes of the present discussion it suffices to
assume that h‘ = Dx‘ = Dy‘ = Dz‘. The grid spacing on a particular level is not arbitrary; instead, the grid spac-
ing at level ‘ + 1 is required to be an integer factor r > 1 finer than the grid spacing at level ‘, so that h‘þ1 ¼ h‘=r.
Although typical choices for this refinement ratio are r ¼ 2 or 4, in the present scheme any integer r > 1 may be
employed as the refinement ratio. (In fact, in the implementation of the adaptive method, the refinement ratio is
neither fixed across the entire patch hierarchy nor required to be isotropic. These slight generalizations of the
presented method are easily implemented in practice but do not seem sufficiently important to warrant the addi-
tional notation required by their description.) The centers of the Cartesian grid cells on level ‘ are the points
xi;j;k ¼ ððiþ 1

2
Þh‘; ðjþ 1

2
Þh‘; ðk þ 1

2
Þh‘Þ, although it is important to note that in general only patch level 0 com-

pletely covers the physical domain. Thus, on a locally refined grid, the level ‘ grid cells are a subset of the cells
of a uniform discretization of the physical domain with the same resolution as level ‘.

The patch levels are required to be properly nested in the sense that the union of the grid patches at level
‘ + 1 must be strictly contained in the union of the patches at level ‘. That is, the union of the level ‘ patches
must be large enough to provide at least a one cell wide buffer of unrefined level ‘ grid cells around the union
of the level ‘ + 1 patches. Note that this is not equivalent to requiring that each level ‘ + 1 patch be contained
(strictly or otherwise) within a single level ‘ patch. The nesting requirement is typically relaxed at domain
boundaries with prescribed physical boundary conditions (but not at periodic boundaries). Fig. 1 displays a
locally refined grid that satisfies the proper nesting condition.

The patch hierarchy is constructed, either at the initial time or at a later point in the computation (i.e., dur-
ing adaptive regridding), by a simple recursive procedure, as follows. The coarsest level, namely level 0, con-
sists of one or more grid patches whose union completely covers the physical domain, U. Next, having
constructed levels 0, . . . , ‘ < ‘max, grid cells on level ‘ are tagged for further refinement according to criteria
described below, thereby identifying the portion of level ‘ that requires still higher spatial resolution. These
tagged cells are grouped together into rectangular grid patches by the Berger–Rigoutsos clustering algorithm
[33]. The level ‘ boxes generated by the clustering algorithm are subsequently refined by the refinement ratio, r,
to form the new level ‘ + 1 patches. (Note that a consequence of this construction is that fine level ‘ + 1
grid patch boundaries align with coarse level ‘ grid cell boundaries. This property simplifies interlevel data
Level 0

Level 1

Level 2

Fig. 1. A properly nested hierarchical structured locally refined Cartesian grid. Patch boundaries are indicated by bold lines. Each level in
the patch hierarchy consists of one or more rectangular grid patches, and the levels satisfy the proper nesting condition. Here, the
refinement ratio is r ¼ 2.
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communication as well as the development of numerical methods on the locally refined grid.) This process is
repeated until the specified maximum number of levels have been generated. Along the way, care must be
taken to ensure that the patch levels satisfy the proper nesting condition. It may also be necessary to further
modify the generated boxes to achieve good load balancing and communications efficiency in parallel compu-
tational environments, but such details are somewhat beside the focus of the present work (see e.g. [27] for a
discussion of one possible route to parallelizing the immersed boundary method).

During the initial construction and subsequent regriddings of the patch hierarchy, grid cells are tagged for
refinement when they contain one or more curvilinear mesh nodes. More precisely, cell (i, j,k) on level ‘ < ‘max

is tagged for refinement if there exists a curvilinear mesh node (q, r, s) such that Xn(q, r, s) 2 [ih‘, (i + 1)h‘] ·
[jh‘, (j + 1)h‘] · [kh‘, (k + 1)h‘]. A consequence of this tagging criteria is that the elastic structure is embedded
in the finest level of the patch hierarchy. (A generalization that we do not consider here is to assign portions of
the elastic structure to levels other than the finest one.) Additional grid cells are tagged for refinement on level
‘max � 1 both to prevent the structure from escaping the finest level of the patch hierarchy between regridding
operations, and to ensure that the structure configuration is sufficiently far from the coarse-fine interface
between levels ‘max � 1 and ‘max to avoid complicating the discretization of the Lagrangian–Eulerian interac-
tion equations. In particular, when velocity interpolation and force spreading are performed via a regularized
delta function with a support of d meshwidths in each coordinate direction (see Section 3.5), we ensure that the
physical position of each node of the curvilinear mesh is at least Ød/2ø + 1 grid cells away from the nearest
coarse-fine interface on level ‘max. Additional cells may be tagged for refinement according to feature detection
criteria (e.g., based on the local magnitude of the vorticity) or other user-defined error estimators.

For a cell-centered quantity w(x, t) defined on the composite Cartesian grid, we employ the notation
wn

i;j;k � wðxi;j;k; tnÞ, where tn is the time of the nth timestep. (Recall that the timestep size is implicitly defined
by Dtn = tn+1 � tn.) Note that some quantities are defined at half-timesteps, tnþ1

2
¼ tn þ 1

2
Dtn. In the present

algorithm, the velocity, un
i;j;k, pressure, p

n�1
2

i;j;k, and Cartesian elastic force density, fn
i;j;k, are all cell-centered quan-

tities. The velocity and force density are defined at integer multiples of Dt, whereas the pressure is defined at
half-timesteps (Fig. 2).

The Godunov procedure used to approximate the nonlinear advection term that appears in the momentum
equation makes use of Eulerian quantities described at the centers of the Cartesian grid cells as well as quan-
tities described at the cell faces. We shall also make use of both cell-centered and face-centered quantities when
defining the various Cartesian grid interpolation operators and finite difference approximations to the spatial
differential operators for locally refined grids. If w(x, t) is defined on the faces of the Cartesian grid cells, we
Fig. 2. Locations of cell-centered and face-centered quantities about Cartesian grid cell (i, j) for a two-dimensional grid. Placement on a
three-dimensional grid is analogous.
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employ the notation wn
i�1

2;j;k
� wðxi�1

2;j;k
; tnÞ to indicate the evaluation of w on the x-faces of the grid, i.e., at the

points xi�1
2;j;k
¼ ðih; ðjþ 1

2
Þh; ðk þ 1

2
ÞhÞ. Evaluation of w on the y- and z-faces is denoted similarly.

By convention, a vector field defined on the Cartesian grid in terms of those vector components that are
normal to the faces of the grid cells is called a MAC vector field [34]. That is to say, if uMAC = (uMAC,vMAC,
wMAC) is a MAC vector field, uMAC is defined at the points xi�1

2;j;k
¼ ðih; ðjþ 1

2
Þh; ðk þ 1

2
ÞhÞ, whereas vMAC is

defined at the points xi;j�1
2;k
¼ ððiþ 1

2
Þh; jh; ðk þ 1

2
ÞhÞ, and wMAC is defined at the points xi;j;k�1

2
¼

ððiþ 1
2
Þh; ðjþ 1

2
Þh; khÞ. In the following discussion, we shall introduce two different MAC vector fields, denoted

uMAC and uADV. Note that these staggered grid velocities are distinct from the cell-centered velocity field,
which is simply denoted u.

Each grid cell at level ‘ < ‘max either is completely covered by cells on the next finer level or is not refined at
all. Analogously, each cell face either is completely covered by cell faces on the next finer level or is not refined
at all. Since we assume that the solution on finer levels is more accurate than that on coarser levels, we dis-
tinguish between valid and invalid regions of each level. For a cell-centered quantity, the valid region of level
‘ consists of precisely those level ‘ grid cells that are not covered by any finer grid cells. Similarly, for a face-
centered quantity, the valid region of level ‘ consists of those level ‘ grid faces that are not covered by any finer
grid faces. Note that face-centered values defined on the coarse-fine interface between levels ‘ and ‘ + 1 are
valid on level ‘ + 1 but not on level ‘.

In the present scheme, all quantities defined on the locally refined Cartesian grid are considered composite

grid variables. For such a variable, the degrees of freedom are precisely those values that are within the valid

region of each level of the patch hierarchy. The values in the invalid region of each level are implicitly defined
in terms of the underlying fine grid values. In particular, values of a composite grid variable in the invalid
region of level ‘ < ‘max are defined to be the conservative averages of the underlying fine grid values on level
‘ + 1 (see, e.g., Eqs. (21) and (22)). Note that this definition for the values in the invalid region has a recursive
character, since it is possible that an invalid grid cell at level ‘ may be covered not only by cells on level ‘ + 1
but also by cells from finer levels. We make use of both cell-centered composite grid variables and face-cen-
tered composite grid variables (including composite grid MAC vector fields) in the adaptive scheme.

3.3. Cartesian grid interpolation and finite difference operators

We now introduce Cartesian grid interpolation operators and finite difference approximations to the spatial
differential operators appearing in the Eulerian equations of motion. For two-dimensional locally refined
grids, we follow an approach introduced by Ewing et al. [26] to discretize the gradient and Laplace operators,
and in three spatial dimensions, we employ a straightforward generalization of their approach. We also intro-
duce corresponding interpolation operators for locally refined grids which are used to obtain purely cell-cen-
tered composite grid discretizations of the gradient and divergence operators. The particular approach that we
take is similar to that described by Minion [19] and Martin and Colella [20]; however, the discretizations that
we employ at coarse-fine interfaces are somewhat simpler than those presented in [19,20]. As we discuss below,
despite its comparative simplicity, our approach still appears to yield a globally second order accurate projec-
tion method. (See Section 3.3.4 for a more complete comparison of our present approach to earlier
approaches.) Moreover, note that the particular discretizations that we employ are in no way restricted to
the context of the immersed boundary method.

We proceed by first defining interpolation and finite difference operators that map cell-centered quantities
to face-centered quantities (and vice versa). These ‘‘c! f’’ and ‘‘f! c’’ operators are then used to define cell-
centered finite difference operators (i.e., operators that map cell-centered quantities to cell-centered quantities)
on locally refined Cartesian grids. Note that in the absence of local refinement, these operators all reduce to
standard second order accurate approximations.

In an attempt to simplify the discussion, we generally first consider the discretizations at the coarse-fine
interface on a two-dimensional grid before considering the more complicated three-dimensional case. In par-
ticular, we consider a portion of the interface between levels ‘ � 1 and ‘ where a coarse cell, denoted (I � 1,J),
lies directly to the left of r fine cells, collectively denoted ði; jÞ; ði; jþ 1Þ; . . . ; ði; jþ r� 1Þ. This situation is
depicted in Fig. 3. When a careful presentation of the three-dimensional case is required, we shall consider



Fig. 3. Locations of cell and face-centered quantities in the vicinity of a coarse-fine interface between levels ‘ and ‘ � 1 for a two-
dimensional locally refined grid. Here, r ¼ 4, p ¼ 0; . . . ; r� 1, and q ¼ r� p � 1. Note that ði; jÞ ¼ r� ðI; JÞ.
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an analogous situation for a three-dimensional locally refined grid, where coarse cell (I � 1,J,K) lies directly to
the left of r2 fine cells, ði; j; kÞ; . . . ; ði; jþ r� 1; kÞ; ði; j; k þ 1Þ; . . . ; ði; jþ r� 1; k þ r� 1Þ. Note that here,
i ¼ rI , j ¼ rJ , and k ¼ rK.

3.3.1. Composite grid definitions for Af!c and Df!cÆ
Recall that values in the invalid regions of each level in the patch hierarchy are defined to be the conser-

vative averages of the underlying fine data. To make this more concrete, consider a scalar function u defined
on the x-faces of the composite grid. In reference to the two-dimensional configuration illustrated by Fig. 3, we
have that the (invalid) value uI�1

2;J
is defined as the conservative average of the underlying fine grid values,

namely
uI�1
2;J
¼ 1

r

Xr�1

p¼0

ui�1
2;jþp: ð21Þ
The three-dimensional case is similar, with
uI�1
2;J ;K
¼ 1

r2

Xr�1

pj;pk¼0

ui�1
2;jþpj;kþpk

: ð22Þ
In either case, the remaining coarse grid values in the invalid region are determined in an analogous fashion.
With the values in the invalid regions of each level in the patch hierarchy so defined, when a cell-centered

vector field ui,j,k is defined by interpolating a MAC vector field, uMAC, from cell faces to cell centers, the indi-
vidual components of u are obtained by linear interpolation (averaging) on each level of the composite grid.
We employ the notation
ui;j;k ¼ ðAf!c
1 uMACÞi;j;k ¼

uMAC
iþ1

2;j;k
þ uMAC

i�1
2;j;k

2
; ð23Þ

vi;j;k ¼ ðAf!c
2 vMACÞi;j;k ¼

vMAC
i;jþ1

2;k
þ vMAC

i;j�1
2;k

2
; ð24Þ

wi;j;k ¼ ðAf!c
3 wMACÞi;j;k ¼

wMAC
i;j;kþ1

2
þ wMAC

i;j;k�1
2

2
; ð25Þ
and we write u = Af!cuMAC. Similarly, the cell-centered divergence of a MAC vector field is approximated on
each level of the hierarchy by centered differences, namely
ðDf!c � uMACÞi;j;k ¼ Df!c
x uMAC

� �
i;j;k
þ Df!c

y vMAC
� 	

i;j;k
þ Df!c

z wMAC
� �

i;j;k

¼
uMAC

iþ1
2;j;k
� uMAC

i�1
2;j;k

h‘
þ

vMAC
i;jþ1

2;k
� vMAC

i;j�1
2;k

h‘
þ

wMAC
i;j;kþ1

2
� wMAC

i;j;k�1
2

h‘
: ð26Þ
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Away from coarse-fine interfaces, it is clear that Af!c and Df!cÆ yield standard second-order accurate inter-
polation and difference operators. It is not difficult to show that Af!c is in fact second order accurate through-
out the composite Cartesian grid. Df!cÆ is second order accurate away from coarse-fine interfaces in the
composite grid but is only first order accurate at coarse cells adjacent to each coarse-fine interface (see [27]).

3.3.2. Composite grid definitions for Ac!f and Gc!f

Away from coarse-fine interfaces, when a MAC vector field, uMAC, is defined by interpolating ui,j,k = (ui,j,k,
vi,j,k,wi,j,k) from cell centers to cell faces, the individual components of uMAC are obtained by linear interpo-
lation (averaging). We employ the notation
uMAC
iþ1

2;j;k
¼ ðAc!f

1 uÞiþ1
2;j;k
¼ uiþ1;j;k þ ui;j;k

2
; ð27Þ

vMAC
i;jþ1

2;k
¼ ðAc!f

2 vÞi;jþ1
2;k
¼ vi;jþ1;k þ vi;j;k

2
; ð28Þ

wMAC
i;j;kþ1

2
¼ ðAc!f

3 wÞi;j;kþ1
2
¼ wi;j;kþ1 þ wi;j;k

2
; ð29Þ
and say in this case that uMAC = Ac!fu. Notice that only the normal component of uMAC is defined at a given
cell face. Similarly, away from coarse-fine interfaces in the composite Cartesian grid, the MAC gradient of a
cell-centered scalar quantity, w, is approximated at cell faces by
ðGc!f
x wÞiþ1

2;j;k
¼

wiþ1;j;k � wi;j;k

h‘
; ð30Þ

ðGc!f
y wÞi;jþ1

2;k
¼

wi;jþ1;k � wi;j;k

h‘
; ð31Þ

ðGc!f
z wÞi;j;kþ1

2
¼

wi;j;kþ1 � wi;j;k

h‘
: ð32Þ
At coarse-fine interfaces, the situation is more complicated, since the operators must involve cell-centered val-
ues taken from both sides of such interfaces. In an attempt to clarify the description of the discretizations em-
ployed at coarse-fine interfaces, we first present the two-dimensional case. We then describe the extension of
this approach to three spatial dimensions.

Consider a cell-centered scalar function, ui,j,k. To determine appropriate definitions for Ac!f and Gc!f at a
coarse-fine interface, we consider the Taylor series expansion of u about points on the interface. In reference to
Fig. 3, the relevant Taylor expansions of u(x) evaluated at fine cell faces xi�1

2;jþp are
ui;jþp ¼ ui�1
2;jþp þ

h‘
2
ðoxuÞi�1

2;jþp þ Oðh2
‘Þ;

ui;jþq ¼ ui�1
2;jþp þ

h‘
2
ðoxuÞi�1

2;jþp þ ðq� pÞh‘ðoyuÞi�1
2;jþp þ Oðh2

‘Þ;

uI�1;J ¼ ui�1
2;jþp �

rh‘
2
ðoxuÞi�1

2;jþp þ
r� 1

2
� p

� �
h‘ðoyuÞi�1

2;jþp þ Oðh2
‘Þ;
where p ¼ 0; . . . ; r� 1 and q ¼ r� p � 1. It is not hard to verify that
ðAc!f
1 uÞi�1

2;jþp �
2

rþ 1

ui;jþp þ uI�1;J

2
þ ð2r� 1Þui;jþp � ui;jþq

2ðrþ 1Þ ¼ ui�1
2;jþp þ Oðh2

‘Þ; ð33Þ
and that
ðGc!f
x uÞi�1

2;jþp �
2

rþ 1

ðui;jþp � uI�1;J Þ
h‘

þ 1

rþ 1

ui;jþq � ui;jþp

h‘
¼ ðoxuÞi�1

2;jþp þ Oðh‘Þ: ð34Þ
Like the composite grid definition for Df!cÆ, the composite grid discrete gradient suffers from a localized
reduction in accuracy at coarse-fine interfaces. Note that Eqs. (33) and (34) can be interpreted as ‘‘naive’’
interpolation and difference schemes that have been corrected to achieve second and first order accuracy,
respectively.
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We next turn our attention to three spatial dimensions. In this case, the relevant Taylor expansions of u(x)
evaluated at fine cell faces xi�1

2;jþpj;kþpk
can be compactly expressed via
ui;jþpj;kþpk

ui;jþqj;kþqk

uI�1;J ;K

0
B@

1
CA ¼

1 h‘
2

0 0

1 h‘
2

ðqj � pjÞh‘ ðqk � pkÞh‘
1 � rh‘

2
r�1

2
� pj

� �
h‘ r�1

2
� pk

� �
h‘

0
BB@

1
CCA�

ui�1
2;jþpj;kþpk

ðoxuÞi�1
2;jþpj;kþpk

ðoyuÞi�1
2;jþpj;kþpk

ðozuÞi�1
2;jþpj;kþpk

0
BBBBB@

1
CCCCCAþ Oðh2

‘Þ;
where pj; pk ¼ 0; . . . ; r� 1, qj ¼ r� pj � 1, and qk ¼ r� pk � 1. It is not hard to verify that
ðAc!f
1 uÞi�1

2;jþpj;kþpk
� 2

rþ 1

ui;jþpj;kþpk
þ uI�1;J ;K

2
þ
ð2r� 1Þui;jþpj;kþpk

� ui;jþqj;kþqk

2ðrþ 1Þ
¼ ui�1

2;jþpj;kþpk
þ Oðh2

‘Þ; ð35Þ

and that
ðGc!f
x uÞi�1

2;jþpj;kþpk
� 2

rþ 1

ðui;jþpj;kþpk
� uI�1;J ;KÞ

h‘
þ 1

ðrþ 1Þ
ui;jþqj;kþqk

� ui;jþpj;kþpk

h‘
:

¼ ðoxuÞi�1
2;jþpj;kþpk

þ Oðh‘Þ: ð36Þ
Note the similarity between Eqs. (33) and (35), and between Eqs. (34) and (36).

3.3.3. Cell-centered composite grid operators

With the foregoing MAC operators so defined, we are ready to define their purely cell-centered counter-
parts. The composite grid cell-centered divergence of a cell-centered vector field, u = (u,v,w), is approximated
at cell centers on each level of the patch hierarchy by
ðD � uÞi;j;k ¼ ðD
f!c � Ac!fuÞi;j;k: ð37Þ
Away from coarse-fine interfaces, this definition of the discrete divergence is identical to its standard second
order accurate uniform grid counterpart, namely
D � uð Þi;j;k ¼
uiþ1;j;k � ui�1;j;k

2h‘
þ vi;jþ1;k � vi;j�1;k

2h‘
þ wi;j;kþ1 � wi;j;k�1

2h‘
: ð38Þ
At coarse-fine interfaces, a somewhat more complicated difference stencil is implicitly defined by the compo-
sition of the composite grid operators Df!cÆ and Ac!f. This approximation is second order accurate away from
coarse-fine interfaces but is only first order accurate in the vicinity of a coarse-fine interface.

Likewise, the composite grid gradient of a cell-centered scalar function, w, is approximated at cell centers by
ðGwÞi;j;k ¼ ðAf!cGc!fwÞi;j;k: ð39Þ
Again, away from coarse-fine interfaces, this composite grid definition of the discrete gradient is identical to its
second order accurate uniform grid counterpart, namely
ðGwÞi;j;k ¼
wiþ1;j;k � wi�1;j;k

2h‘
;
wi;jþ1;k � wi;j�1;k

2h‘
;
wi;j;kþ1 � wi;j;k�1

2h‘

� �
: ð40Þ
Like the composite grid discrete divergence, the cell-centered composite grid gradient is second order accurate
away from coarse-fine interfaces but suffers from a localized reduction in accuracy in the vicinity of a coarse-
fine interface.

Finally, the Laplacian of a cell-centered scalar function, w, is approximated at cell centers via
ðLwÞi;j;k ¼ ðD
f!c �Gc!fwÞi;j;k: ð41Þ
Note that this composite grid discretization of the Laplace operator is symmetric [26]. Away from the coarse-
fine interface, the composite grid operator agrees with the standard second order accurate uniform grid dis-
cretization, namely
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ðLwÞi;j;k ¼
wiþ1;j;k þ wi�1;j;k � 2wi;j;k

h2
‘

þ
wi;jþ1;k þ wi;j�1;k � 2wi;j;k

h2
‘

þ
wi;j;kþ1 þ wi;j;k�1 � 2wi;j;k

h2
‘

: ð42Þ
Like the composite grid divergence and gradient operators, the cell-centered composite grid approximation to
the Laplacian is only second order accurate away from coarse-fine interfaces.

3.3.4. Local reductions in the order of accuracy
As we have noted in the foregoing discussion, whereas the composite grid interpolation operators Ac!f and

Af!c are second order accurate throughout the patch hierarchy, each of the composite grid finite difference
approximations is only second order accurate away from coarse-fine interfaces in the locally refined grid.
In the vicinity of such interfaces, each of the composite grid finite difference operators employed in the present
work is only first order accurate. Luckily, such localized reductions in the accuracy of the discretizations are
acceptable since, at least when solving elliptic problems, it is well known that reducing the order of accuracy
on lower dimensional interfaces within the computational domain does not alter the global accuracy of the
solution. As we demonstrate below, in practice we observe empirical second order convergence rates for
the adaptive immersed boundary method as long as the test problem is sufficiently smooth. Our adaptive pro-
jection method has also been verified to yield global second order accuracy when used as a standalone incom-
pressible flow solver in both two and three spatial dimensions [27].

Even though they do not seem to prevent the scheme from attaining global second order accuracy, localized
reductions in accuracy could be avoided altogether by employing higher order approximations at the coarse-
fine interface. In the case of the discrete gradient operator, this has been done in previous projection methods
for locally refined grids [19,20,24], where quadratic interpolation is employed to obtain a more accurate approx-
imation to the gradient at the coarse-fine interface. Implementing the quadratic discretization at coarse-fine
interfaces is somewhat more involved than the present approach since additional coarse grid values are used
in the discretization. For some coarse-fine interface configurations, it is not even possible to perform the full
coarse grid quadratic interpolation [20]. Since this quadratic approximation to the gradient has generally been
paired with the same composite grid divergence operator as that used in the present work, the resulting com-
posite grid discretization of $2 still suffers from a localized reduction in accuracy near coarse-fine interfaces.
Moreover, this discretization is non-symmetric, unlike the discretization employed in the present work.

Since both approaches appear to yield schemes that have essentially the same formal order of accuracy, it
would be interesting to compare directly solutions obtained by the present approach with those obtained when
the composite grid gradient is discretized by the methods described by [19,20,24]. In particular, it would be
useful to determine whether the additional difficulties introduced by employing quadratic interpolation at
coarse-fine interfaces (including loss of symmetry in the discretization of $2 and a more complex implemen-
tation) are justified by improvements in the quality of the computed solution. At least in the context the
immersed boundary method, however, as long as the coarse-fine boundary discretization yields a (globally)
second order accurate projection method, we suspect that the choice of coarse-fine discretization will have lit-
tle impact on the overall quality of the computed dynamics.

3.4. Discrete projection operators

Like all projection-type methods for incompressible flow, our method for the incompressible Navier–Stokes
equations makes use of the Hodge decomposition theorem [21–23]. This result says that an arbitrary smooth
vector field can be uniquely decomposed as the sum of a divergence free vector field and the gradient of a sca-
lar function. On a uniform Cartesian grid, the (cell-centered) discrete analog of this decomposition is
w ¼ vþGu; ð43Þ
where w is an arbitrary cell-centered vector field on the Cartesian grid and v satisfies (D Æ v)i,j,k ” 0 on the grid.
Eq. (43) implicitly defines a projection operator, P, given by
v ¼ Pw ¼ ðI �GðD �GÞ�1
D�Þw: ð44Þ
Since (D Æ v)i,j,k ” 0, for any vector field w, P2w = Pw, so P is idempotent. That is to say, P is a projection.
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In practice, the application of the operator defined by Eq. (44) requires the solution of a system of linear
equations of the form D Æ Gu = D Æ w. On a uniform, periodic, three-dimensional Cartesian grid with an even
number of grid cells in each coordinate direction, D Æ G has an eight-dimensional nullspace. (In general, on a
uniform d-dimensional periodic grid with an even number of grid cells in each coordinate direction, D Æ G has
a 2d-dimensional kernel. Analogous operators are poorly behaved even in the absence of periodic boundary
conditions or on grids with odd numbers of grid cells.) This complicates the solution process when iterative
methods (such as multigrid) are employed to solve for u. Moreover, when P is used in the solution of the
incompressible Navier–Stokes equations, this non-trivial nullspace results in the decoupling of pressure field
on eight sub-grids, leading to a so-called ‘‘checkerboard’’ instability. The difficulties posed by exact cell-cen-
tered projections are only compounded in the presence of local mesh refinement.

To avoid these difficulties, it was originally proposed in [35] that the foregoing exact projection be replaced
by a carefully chosen approximate projection operator. In the present work, the approximate projection oper-
ator, ~P , is defined by
~Pw ¼ ðI �GðLÞ�1
D�Þw: ð45Þ
(In the uniform grid case, note that this approximate projection operator is the one first introduced by Lai
[36]; see also, e.g. [20].) It is important to note that this operator is not a projection, since L 6¼ D Æ G,
although for smooth u, kD � ~Puk ! 0 as the composite grid is refined. On a uniform grid with periodic
boundary conditions, it can be demonstrated analytically that k~Pwk 6 kwk, so in that case, the cell-centered
approximate projection operator is stable [36]. Another important issue with regard to the stability of the
overall method is the question of which quantity is to be (approximately) projected [25]; we address this
issue below in Section 3.6.

Unlike exact projections for co-located cell-centered vector fields, exact projections of MAC vector fields
are easily implemented both on uniform and locally refined grids, and require no computational machinery
beyond that required to compute the foregoing approximate cell-centered projection, ~P . To determine the
form of the exact MAC projection, first recall that for a cell-centered scalar quantity, w,
ðLwÞi;j;k ¼ ðD
f!c �Gc!fwÞi;j;k: ð46Þ
This correspondence allows us to compute easily the exact projection of a MAC vector field. In particular, the
MAC projection of wMAC is given by
vMAC ¼ P MACwMAC ¼ I �Gc!fL�1Df!c�
� �

wMAC; ð47Þ
where PMAC denotes the MAC projection operator. This is an exact projection, since (Df!c Æ vMAC)i,j,k ” 0.
Moreover, in practice, the application of PMAC requires the solution of the same discrete Poisson problem that
must be solved to apply the approximate cell-centered projection, ~P .

The approximate cell-centered projection defined above, ~P , can be reinterpreted in terms of the exact MAC
projection, PMAC. Given a cell-centered vector field, w, the approximate projection of w is determined by first
solving a system of linear equations for u,
Lu ¼ D � w; ð48Þ

and then computing
v ¼ w�Gu: ð49Þ
To see the connection between the cell-centered approximate projection and the MAC projection, let wMAC be

defined by wMAC = Ac!fw. The (exact) MAC projection of wMAC is obtained by first solving a system of linear
equations for u 0,
Lu0 ¼ Df!c � wMAC; ð50Þ

and then computing
vMAC ¼ wMAC �Gc!fu0: ð51Þ
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Since D Æ w = Df!c ÆAc!fw, however, it is clear that the solutions to (48) and (50) are equal up to an additive
constant, i.e., ui;j;k � u0i;j;k þ C. Consequently, (Gu)i,j,k ” (Af!cGc!fu 0)i,j,k. Thus, when wMAC = Ac!fw, the
cell-centered discrete gradient that is employed to obtain v in (49) is precisely the cell-centered interpolation
of the MAC gradient that is used to obtain vMAC in (51).

From the foregoing discussion, it might appear that a more natural definition for an approximate cell-
centered projection of w could be obtained by computing Af!cPMACAc!fw. That is: First, interpolate the
cell-centered vector field to cell faces. Second, compute the exact MAC projection of the face-centered vector
field. Third, interpolate the resulting discretely divergence-free, face-centered vector field back onto the cell
centers. Although this may seem like a plausible way to define an approximate projection, this approach is
not used. As Minion points out [19], the problem with this approach is that when simple averages are used
to interpolate from cell centers to cell faces (and vice versa), this method introduces a diffusive term into
the discretization that scales like the Cartesian grid spacing. In addition to yielding a method that is at best
first order accurate, this diffusive term also dramatically smears out any fine scale features of the flow. Similar
diffusive terms occur even if higher order interpolants are used in place of simple averaging. The approximate
projection operator employed in the present work avoids these undesirable features.

3.5. A smoothed version of the Dirac delta function

In its treatment of the interaction equations that connect the Lagrangian and Eulerian frames, the
immersed boundary method makes use of a smoothed approximation to the Dirac delta function that gener-
ally is of the tensor product form
dh‘ðxÞ ¼
1

h3
‘

/
x
h‘

� �
/

y
h‘

� �
/

z
h‘

� �
; ð52Þ
recalling that x = (x,y,z) and that h‘ = Dx‘ = Dy‘ = Dz‘.
Following the approach described in [30], it can be shown that the following five postulates uniquely deter-

mine one particular choice of /(r):
/ðrÞ is continuous for all real r; ð53Þ
/ðrÞ ¼ 0 for jrjP 3; ð54ÞX
j even

/ðr � jÞ ¼
X
j odd

/ðr � jÞ ¼ 1

2
for all real r; ð55Þ

X
j

ðr � jÞm/ðr � jÞ ¼ 0 for m ¼ 1; 2; 3 and for all real r; ð56Þ
X

j

ð/ðr � jÞÞ2 ¼ C for all real r; ð57Þ
where the constant C is independent of r. (A detailed motivation for these postulates is provided in [7,30].) The
unique function /(r) that satisfies these requirements is
/ðrÞ ¼

61
112
� 11

42
jrj � 11

56
jrj2 þ 1

12
jrj3 þ

ffiffi
3
p

336
ð243þ 1584jrj � 748jrj2

�1560jrj3 þ 500jrj4 þ 336jrj5 � 112jrj6Þ
1
2; 0 6 jrj < 1;

21
16
þ 7

12
jrj � 7

8
jrj2 þ 1

6
jrj3 � 3

2
/IB

6 ðjrj � 1Þ; 1 6 jrj < 2;

9
8
� 23

12
jrj þ 3

4
jrj2 � 1

12
jrj3 þ 1

2
/IB

6 ðjrj � 2Þ; 2 6 jrj < 3;

0; 3 6 jrj:

8>>>>>>><
>>>>>>>:

ð58Þ
For this particular /(r), the smoothed delta function that is constructed by (52) has a support of six mesh-
widths in each coordinate direction (yielding a support of 216 grid cells in three spatial dimensions) and is

referred to as the six-point delta function, which we denote by dIB
6hðxÞ. Many other choices for the regularized

delta function, dh, are possible. See e.g. [3,37].
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3.6. Timestepping

Projection methods for hierarchically composed locally refined grids fall into one of two categories: meth-
ods that employ a uniform timestep over the entire range of levels composing the composite grid [19,38], and
methods that refine the timestep at the same rate as the spatial grid spacing (i.e., methods that employ subcy-

cling in time) [20,24]. Although it has been estimated that projection methods that synchronously advance all
levels of the grid hierarchy are less efficient than schemes employing subcycling in time [24], the present
method takes the former approach for ease of implementation. We have tried to design our present implemen-
tation in such a way that subcycling in time can be introduced without too much additional effort, but the
implementation of such a scheme in the immersed boundary context remains future work.

At the beginning of timestep n, we possess approximations to the values of the state variables at time tn,
namely un and Xn. The pressure (which is in principle not a state variable) must be defined at half-timesteps
to obtain a consistent second order accurate method. Thus, at the beginning of each timestep n > 0, we also
possess an approximation to a timestep-lagged pressure, pn�1

2. We also maintain an ‘‘auxiliary’’ MAC velocity,
uMAC,n, that is used in our treatment of the nonlinear advection term that appears in the momentum equation.
(As we describe below, the value of uMAC is obtained during the process of updating the cell-centered velocity,
u.)

To advance the solution forward in time by the increment Dt, we first compute X(n+1)(q, r, s), a preliminary

approximation to the locations of the nodes of the curvilinear mesh at time tn+1. (Note that X(n+1) is only our
first approximation to the structure configuration at time tn+1. The final approximation is denoted Xn+1, and
generally X(n+1) 6� Xn+1.) To define X(n+1), Eq. (4) is approximated by
Xðnþ1Þðq; r; sÞ ¼ Xnðq; r; sÞ þ Dt
X

i;j;k2level ‘max

un
i;j;kdh‘max

ðxi;j;k � Xnðq; r; sÞÞh3
‘max
: ð59Þ
(Recall that when we employ a regularized delta function with a support of d meshwidths in each coordinate
direction, we ensure that the physical position of each node of the curvilinear mesh is at least Ød/2ø + 1 grid
cells away from the nearest coarse-fine interface on level ‘max.)

A discrete approximation to F½Xð�; �; �Þ; t� provides the curvilinear elastic force densities corresponding to
structure configurations Xn and X(n+1), respectively denoted Fn and F(n+1). The equivalent Cartesian elastic
force densities are obtained by discretizing (3) and are given by
fn
i;j;k ¼

X
q;r;s

Fnðq; r; sÞdh‘max
ðxi;j;k � Xnðq; r; sÞÞDqDrDs; ð60Þ

f
ðnþ1Þ
i;j;k ¼

X
q;r;s

Fðnþ1Þðq; r; sÞdh‘max
ðxi;j;k � Xðnþ1Þðq; r; sÞÞDqDrDs: ð61Þ
(Since the elastic structure is embedded within the finest level of the composite Cartesian grid, if fi,j,k 6¼ 0 for a
valid cell (i, j,k), that cell must be on level ‘max.) A timestep-centered approximation to the Cartesian elastic
force density is defined by
fnþ1
2 � 1

2
ðfn þ fðnþ1ÞÞ: ð62Þ
We next determine un+1, uMAC,n+1, and pnþ1
2 by integrating the incompressible Navier–Stokes equations in time

via a second order projection method similar to the method introduced by Bell et al. [23], a method that in turn
is a second order accurate version of Chorin’s original projection method [21,22]. Our algorithm, first intro-
duced in [3], extends to the viscous case the hybrid approximate projection method (‘‘version 5’’) introduced
by Almgren et al. for the incompressible Euler equations [25]. In particular, as in [25], we obtain the values of
un+1 and pnþ1

2 in terms of the solutions to different projection equations. The value of uMAC,n+1 is obtained as a
byproduct of the computation that yields un+1.

Given un, uMAC,n, fnþ1
2, and pn�1

2, we first obtain the approximation to the updated velocity, un+1. We do so
by discretizing the momentum equation (1) over the time interval Dt without imposing the constraint of
incompressibility on un+1. Instead, the gradient of the time-lagged pressure provides an approximation to
the true pressure gradient. The nonlinear advection term is treated explicitly, and a version of the implicit
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L-stable method of Twizell et al. [15] introduced by McCorquodale et al. [16] is used to integrate the viscous
terms in time. With m ” l/q, the discretization of (1) is
ðI � g2mLÞðI � g1mLÞu� ¼ ðI þ g3mLÞun þ DtðI þ g4mLÞ �Nnþ1
2 þ 1

q
fnþ1

2 �Gpn�1
2

� 	� �
; ð63Þ
where Nnþ1
2 ¼ Nnþ1

2ðun; uMAC;n; fn;Gpn�1
2Þ is the explicit approximation to ½ðu � rÞu�nþ

1
2 described in the appendix

to [3] (note that in three spatial dimensions, we make use of full corner transport coupling [39]; see also [27] for
a careful presentation of the particular three-dimensional treatment we employ), and
g1 ¼
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4aþ 2
p

2
Dt; g2 ¼

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4aþ 2
p

2
Dt;

g3 ¼ ð1� aÞDt; g4 ¼
1

2
� a

� �
Dt;
with a ¼ 2�
ffiffiffi
2
p
� �, where � is machine precision.

The solution to Eq. (63) yields an intermediate velocity field, traditionally denoted u*, that is generally not
discretely divergence free. In formulating a projection method, one may project either the velocity increment
(i.e., u* � un) or the intermediate velocity itself. Although either choice yields the same value for un+1 when
exact projections are employed, this is not the case when approximate projection operators are used. Several
studies have found that a more stable algorithm is obtained by approximately projecting the intermediate
velocity [25,20], and we follow this approach. In particular, un+1 is obtained by making use of the approximate
projection operator, ~P , defined by Eq. (45), yielding
unþ1 ¼ ~Pu�: ð64Þ

To compute uMAC,n+1, we first interpolate u* from cell centers to cell faces, obtaining
uMAC;� ¼ Ac!fu�: ð65Þ

In general, uMAC,* is not discretely divergence free, so uMAC,n+1 is obtained by computing the MAC projection
of uMAC,*, i.e.,
uMAC;nþ1 ¼ P MACuMAC;�: ð66Þ

Luckily, this operation does not require the solution of an additional system of linear equations! To see why
this is so, recall that computing the approximate projection of u* requires the solution of a discrete Poisson
problem of the form
Lu ¼ D � u�: ð67Þ

Since (Df!c Æ uMAC,*)i,j,k ” (Df!c Æ Ac!fu*)i,j,k ” (D Æ u*)i,j,k, Eq. 67 is the same linear system that must be solved
to project uMAC,*. The solution to 67, u, may simply be reused to evaluate
uMAC;nþ1 ¼ uMAC;� �Gc!fu: ð68Þ

Having obtained the values of un+1 and uMAC,n+1, we now turn our attention to computing the updated pres-
sure. Although it is possible to determine this value in terms of the approximate projection of u*, we have
found that it is beneficial to determine pnþ1

2 by approximately projecting a second intermediate velocity field
that is given by a second treatment of the momentum equation. This alternate treatment of (1) is nearly iden-
tical to (63) except that it does not include any approximation to the pressure gradient, i.e.,
ðI � g2mLÞðI � g1mLÞ~u� ¼ ðI þ g3mLÞun þ DtðI þ g4mLÞ �Nnþ1
2 þ 1

q
fnþ1

2

� �
: ð69Þ
The solution to this equation, ~u�, is the intermediate velocity that we project to obtain pnþ1
2. We emphasize that

~u� is only used to compute pnþ1
2 and is not used in determining our final approximation to the velocity at time

tn+1. The approximate projection of ~u�, however, generates an alternate approximation to the velocity at time
tn+1,
~unþ1 ¼ ~P~u� ¼ ~u� �G~u; ð70Þ
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i.e.,
~u� ¼ ~unþ1 þG~u; ð71Þ

where ~u is defined as the solution to a discrete Poisson problem,
L~u ¼ D � ~u�: ð72Þ

Since ~P is an approximate projection operator, in general ~unþ1 6¼ unþ1.

The pressure consistent with (69) and (70) is the scalar function pnþ1
2 that satisfies
ðI � g2mLÞðI � g1mLÞ~unþ1 ¼ ðI þ g3mLÞun þ DtðI þ g4mLÞ �Nnþ1
2 þ 1

q
fnþ1

2 �Gpnþ1
2

� 	� �
: ð73Þ
Following [40], a second order accurate approximation to the updated pressure is determined by substituting
(70) back into (69) and comparing the result to (73). Doing so, the discrete pressure gradient is seen to satisfy
ðI þ g4mLÞGpnþ1
2 ¼ q

Dt
ðI � g2mLÞðI � g1mLÞG~u: ð74Þ
Consequently, we obtain pnþ1
2 via
pnþ1
2 ¼ q

Dt
ðI þ g4mLÞ�1ðI � g2mLÞðI � g1mLÞ~u: ð75Þ
Since g4 ¼ ð
ffiffiffi
2
p
� 3

2
þ �ÞDt < 0, and since L is a non-positive operator, pnþ1

2 is well-defined by (75). Note that ~u
is proportional to a first order accurate approximation to the time-centered pressure. Full second order accu-
racy is obtained by solving a system of linear equations in (75). Although pnþ1

2 has no influence on the value
obtained for un+1, it is used in the next timestep, when computing un+2.

(Note that in the foregoing, Eqs. (70), (71), (73) and (74), along with the quantity ~unþ1 that appears in those
equations, are used to derive the appropriate definition for the updated pressure but not to compute the value
of pnþ1

2. In particular, pnþ1
2 is computed only in terms of ~u� and ~u via Eqs. (69), (72) and (75).)

With the values un+1, uMAC,n+1, and pnþ1
2 in hand, we complete the timestep by computing Xn+1. Note that

the explicit treatment of the advection terms effectively requires that Dt be sufficiently small to prevent any
curvilinear mesh node from moving more than one meshwidth in any coordinate direction during a single
timestep. In particular, the time increment must satisfy a CFL condition of the form
Dt 6 C min
‘2f0...‘maxg

h‘= max
ði;j;kÞ2level ‘

ðjun
i;j;kj; jvn

i;j;kj; jwn
i;j;kjÞ; ð76Þ
where the CFL number, C, is less than one. Since each curvilinear mesh node is at least Ød/2ø + 1 grid cells
away from the nearest coarse-fine interface on level ‘max at the beginning of the timestep, for each (q, r, s),
X(n+1)(q, r, s) is at least Ød/2ø grid cells away from the nearest coarse-fine interface on level ‘max. Consequently,
Xn+1(q, r, s) is well-defined by
Xnþ1ðq; r; sÞ ¼ Xnðq; r; sÞ þ Dt
2

X
i;j;k2level ‘max

un
i;j;kdh‘max

ðxi;j;k � Xnðq; r; sÞÞh3
‘max

 

þ
X

i;j;k2level ‘max

unþ1
i;j;k dh‘max

ðxi;j;k � Xðnþ1Þðq; r; sÞÞh3
‘max

!
: ð77Þ
Note that the evolution of the structure configuration via (59) and (77) takes the form of a second order accu-
rate strong stability-preserving Runge–Kutta method [14]. Eq. (77) is an explicit formula for Xn+1, since X(n+1)

is already defined; see Eq. (59).
Finally, we must discuss the initial timestep. The initial state of the system is completely determined by the

initial values of u and X. First, uMAC is initialized by interpolating the initial value of u from cell centers to cell
faces,
uMAC;0 ¼ Ac!fu0: ð78Þ

To ensure that the initial velocity at least approximately satisfies ðD � uÞ0i;j;k � 0, we then perform an initial
approximate projection, replacing u0 by
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u0  ~Pu0: ð79Þ

We similarly replace uMAC,0 by its MAC projection,
uMAC;0  P MACuMAC;0: ð80Þ

Again, having computed the approximate projection of u0, it is not necessary to solve any additional systems
of linear equations to compute this initial MAC projection.

Next, the pressure must be determined from the values of u0, uMAC,0, and X0. We obtain the pressure iter-
atively as follows. First, the pressure is provisionally set to be identically zero. We then perform a preliminary
timestep. The computation of this preliminary timestep yields a first approximation to the pressure at time
t ¼ 1

2
Dt0. We then iteratively recompute the initial timestep, always using the most recent approximation to

the pressure. After a small number of iterations (we use a total of five), we obtain a sufficiently accurate
approximation to the pressure at time t ¼ 1

2
Dt0 to achieve overall second order accuracy.

3.7. Adaptive regridding

During the main timestepping loop, the locally refined Cartesian grid is regenerated at periodic intervals
according to the refinement criteria described in Section 3.2. During this adaptive regridding process, a
new patch hierarchy is generated, and each Eulerian quantity that is maintained on the locally refined Carte-
sian grid must be transferred from the old patch hierarchy to the new one. Where the old and new level ‘
patches overlap, such Eulerian quantities are copied directly from the old patches to the new ones. The
remaining values on the new level ‘ patches are determined by interpolation from coarser levels.

The interpolation process employed during adaptive regridding may be either conservative or non-conser-
vative, depending on the quantity that is being interpolated. For instance, the pressure, p, is not a conserved
quantity, and so it suffices to employ simple trilinear interpolation to determine new values on level ‘ from
values on the next coarser level (i.e., level ‘ � 1). In particular, for a non-conserved quantity, those values
on the new level ‘ patches that are not supplied by some old level ‘ patch are determined by performing tri-
linear interpolation using the nearest eight coarse grid values. On the other hand, for uniform density incom-
pressible flows, the velocity, u, is a conserved quantity (because of momentum conservation), and thus
maintaining discrete conservation of u during adaptive regridding prevents spurious changes in the net
momentum of the system. In this case, if a value on a new level ‘ patch is not supplied by some old level ‘
patch, it is obtained in terms of a piecewise trilinear reconstruction of u on the next coarser level via a mul-
tidimensional generalization of the monotonized central-difference (MC) limited piecewise linear reconstruc-
tion procedure. In the multidimensional MC limited interpolation procedure, the mean value of the
reconstruction of u in a level ‘ � 1 coarse grid cell (I,J,K) is set to the value uI,J,K, whereas the slope of the
piecewise trilinear reconstruction in each coordinate direction is taken to be the MC limited slope in that direc-
tion, e.g., the slope of the reconstruction of u in the x-coordinate direction is defined by
minmod
un

Iþ1;J ;K � un
I�1;J ;K

2h‘�1

; 2
un

I ;J ;K � un
I�1;J ;K

h‘�1

; 2
un

Iþ1;J ;K � un
I ;J ;K

h‘�1

� �
; ð81Þ
where the minmod function of three arguments is
minmodða; b; cÞ ¼

a if jaj 6 minðjaj; jbj; jcjÞ and signðaÞ ¼ signðbÞ ¼ signðcÞ;
b if jbj 6 minðjaj; jbj; jcjÞ and signðaÞ ¼ signðbÞ ¼ signðcÞ;
c if jcj 6 minðjaj; jbj; jcjÞ and signðaÞ ¼ signðbÞ ¼ signðcÞ;
0 otherwise:

8>>><
>>>:

ð82Þ
Thus, if a, b, and c have the same sign, the minmod function evaluates to the one with the smallest modulus;
otherwise, it evaluates to zero. By determining the slopes in this manner, the piecewise trilinear reconstruction
retains second order accuracy where u is smooth and avoids creating spurious maxima or minima where u is
not smooth. (See e.g. [41] for a more detailed presentation of slope limiters, including the MC limiter.) When
this procedure is used to determine the new fine grid values, the discrete integral of u (and thus the momentum
of the discrete system) is not altered by the adaptive regridding process.
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As a result of the foregoing conservative interpolation procedure, the cell-centered velocity, un, may no
longer be ‘‘sufficiently divergence free’’ with respect to the cell-centered divergence operator, DÆ, following
adaptive regridding. To address this issue, we replace un by its approximate projection after the regridding pro-
cess is complete. Before doing so, however, we first reinitialize uMAC,n by interpolating un from cell centers to
cell faces,
uMAC;n  Ac!f un: ð83Þ

Next, we replace un by its approximate projection, i.e.,
un  ~Pun: ð84Þ

As usual, we simultaneously replace uMAC,n by its exact MAC projection,
uMAC;n  P MACuMAC;n; ð85Þ

without having to solve any additional systems of linear equations.

Note that a consequence of our explicit treatment of the Lagrangian equations of motion (i.e., Eqs. (59) and
(77)) is that (76) with C < 1 is not the only stability constraint that Dt must satisfy. For many applications of
the immersed boundary method, it is often necessary that Dt ¼ Oðh2

‘max
Þ or even Dt ¼ Oðh4

‘max
Þ to ensure the sta-

bility of the scheme. (Although note that replacing the explicit treatment of the Lagrangian equations of
motion in the present scheme with an implicit treatment would presumably free the method from these oner-
ous stability constraints and allow for the stable use of any C < 1 [42,43]. Unfortunately, at the present time,
the development and implementation of an implicit version of the immersed boundary method that is suitable
for large scale simulation remains future work.) Thus, in practice the timestep size is frequently guaranteed to
satisfy (76) for C	 1, so that adaptively regenerating the patch hierarchy once every nregrid = º1/Cß timesteps
is sufficiently frequent to prevent the structure from escaping the finest level of the hierarchy. Adaptive regrid-
ding could be performed even less frequently by ensuring that each curvilinear mesh node is more than
Ød/2ø + 1 level ‘max grid cells away from the coarse-fine interface between levels ‘max � 1 and ‘max, where d

is the support of dh. This could be accomplished, for instance, by employing larger tag buffers when the patch
hierarchy is (re-)constructed. In practice, we generally do not make any effort to decrease the regridding fre-
quency since regridding is typically a small fraction of the overall computational cost of the scheme.

3.8. Summary of the adaptive algorithm

The adaptive algorithm is summarized as follows:

1: construct the initial patch hierarchy and initialize all state variables
2: (u0,uMAC,0) project(u0)
3: set p0 = 0
4: for n = 0 to nmax by 1 do {the main timestep loop}
5: if mod (n,nregrid) = 0 and n > 0 then

6: regrid the patch hierarchy
7: interpolate Eulerian quantities from the old patch hierarchy to the new one
8: (un,uMAC,n) project(un)
9: end if

10: for all (q, r, s) in the curvilinear mesh do {see Eq. (59)}
11: interpolate un to Xn(q, r, s) to determine Un(q, r, s)
12: compute X(n+1)(q, r, s) = Xn(q, r, s) + DtUn(q, r, s)
13: end for

14: for all (q, r, s) in the curvilinear mesh do {see Eqs. (60) and (61)}
15: compute Fn(q, r, s) and F(n+1)(q, r, s) from Xn(Æ,Æ,Æ) and X(n+1)(Æ,Æ,Æ)
16: determine fn and f(n+1) by spreading Fn(q, r, s) and F(n+1)(q, r, s) to the Cartesian grid
17: end for

18: set fnþ1
2 ¼ 1

2
ðfn þ fðnþ1ÞÞ
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19: if n = 0 then {initialize the pressure}
20: for m = 1 to 5 by 1 do

21: compute the explicit approximation to ½ðu � rÞu�
1
2 from u0, uMAC,0, f0, and p0 {see [3,27]}

22: solve Eq. (63) for u*

23: (u1,uMAC,1) project(u*)
24: solve Eqs. (73) and (75) to determine p

1
2

25: p0  p
1
2

26: end for

27: else {use the time-lagged pressure for all timesteps n > 0}
28: compute the explicit approximation to ½ðu � rÞu�nþ

1
2 from un, uMAC,n, fn, and pn�1

2 {see [3,27]}
29: solve Eq. (63) for u*

30: (un+1,uMAC,n+1) project(u*)
31: solve Eqs. (73) and (75) to determine pnþ1

2

32: end if

33: for all (q, r, s) in the curvilinear mesh do {see Eq. (77)}
34: interpolate un+1 to X(n+1)(q, r, s) to determine U(n+1)(q, r, s)
35: compute Xnþ1ðq; r; sÞ ¼ Xnðq; r; sÞ þ Dt

2
ðUnðq; r; sÞ þUðnþ1Þðq; r; sÞÞ

36: end for

37: end for

In the foregoing pseudocode, note that U(Æ, Æ, Æ) is taken to be the interpolation of the Cartesian grid velocity,
u, to the nodes of the curvilinear mesh, and that the function project(u*) is defined by the following procedure:
function (u,uMAC) project(u*)
compute uMAC,* = Ac! fu*

solve Lu = D Æ u* for u
compute u = u* � Gu
compute uMAC = uMAC,* � Gc!fu
4. Computational convergence results in two spatial dimensions

Prior to [3], the convergence of the immersed boundary method typically had been studied computationally
for problems which were not sufficiently smooth for the method to attain its formal convergence rate. In partic-
ular, most earlier convergence studies focused on the case of a viscous incompressible fluid interacting with an
infinitely thin elastic membrane (i.e., an elastic interface or boundary). The true solutions to such problems pos-
sess discontinuities at the interface in the pressure and in the normal derivative of the velocity, and these discon-
tinuities are not accurately captured either by the present version of the immersed boundary method or by earlier
versions of the method. (An alternative approach is taken by the immersed interface method [44,45], where such
discontinuities are explicitly accounted for by the method in a manner that yields higher order accuracy.)

We introduced a different approach to testing the immersed boundary method in [3], where we considered the
interaction of a viscous incompressible fluid and an anisotropic incompressible viscoelastic shell of finite thick-
ness. Since the discontinuities which are present in the true interface problem do not arise for the particular vis-
coelastic shell considered, this approach allowed us to assess the performance of the uniform grid version of the
present scheme in a setting where convergence rates that corresponded to the formal order of accuracy of the
method were both anticipated and observed. In the present work, we follow the same approach to test the adap-
tive version of the immersed boundary method. For comparison, we also summarize relevant results first
reported in [3]. Although we present in [3] empirical convergence results over a broad range of Reynolds num-
bers, in the present work we restrict our attention to the moderate Reynolds number case, where Re 
 100.

In all of our convergence studies, we consider a finite thickness anisotropic viscoelastic shell immersed in a
viscous incompressible fluid. The mathematical model of the shell is constructed by superimposing two
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components, so that they occupy the same region of space. One of these components is a continuum of mass-
less elastic fibers, and the other is a viscous incompressible fluid that happens to have the same density and
viscosity as the fluid in which the shell is immersed. The shell inherits its anisotropic elasticity from its fiber
component, and its density, viscosity, and incompressibility from its fluid component. Even though the com-
putational model involves discrete fibers, one should not think of discrete fibers in a continuous fluid, since the
fluid equations are also discretized, and the meshwidths of the two discretizations are the same order of mag-
nitude. The material properties of the shell as described above emerge in the common continuum limit of the
two discretizations. We consider two particular sets of elastic properties. In Section 4.1, we specify the stiffness
of the fibers so that the fiber tension smoothly tends to zero at the edges of the shell. As long as the structure
does not become too distorted, the resulting Cartesian elastic force density, f, will be a continuous function of
x. In Section 4.2, the fiber tension is taken to be a constant multiple of joX/osj. In this case, the resulting Carte-
sian elastic force density is only piecewise continuous because of the sharp discontinuity in material properties
that occurs at the fluid–structure interface. For the moderate Reynolds number flows considered in the present
study, where Re 
 100, we observe global second order or nearly second order convergence rates in both

situations.
Before proceeding to the specification of the two sets of elastic properties in Sections 4.1 and 4.2, and the

presentation of the corresponding computational results, we first describe the common aspects for both sets of
computations, including the computational meshes used to describe the Cartesian and curvilinear coordinate
spaces, the initial conditions, and the choice of timestep.

For the two-dimensional problems considered in the present section, the physical domain, U, is taken to be
the periodic unit square and is discretized on either a uniform or an adaptively refined grid. The number of
grid cells in each coordinate direction on the coarsest level (i.e., on level 0) is denoted N0, and the refinement
ratio between successive levels of resolution is r. Thus the effective grid spacing on the finest level of the grid
(i.e., on level ‘max) corresponds to that of a uniform grid with N ‘max ¼ r‘max N 0 grid cells in each coordinate
direction. Unlike the discretization of the physical domain, the curvilinear mesh that discretizes the curvilinear
coordinate space is fixed throughout each computation. For this two-dimensional computational study, we
take the curvilinear coordinate (r, s)-space to be X = [0, 1] · [0, 1], and we employ a fixed Mr · Ms computa-
tional lattice in the curvilinear coordinate space, where Mr ¼ 3

8
N ‘max and Ms ¼ 75

16
N ‘max . With Dr = 1/Mr and

Ds = 1/Ms, the nodes of the curvilinear mesh are the points
ðr; sÞ ¼ ðr0; s0Þ þ ðmrDr;msDsÞ ¼ Dr
2
;
Ds
2

� �
þ ðmrDr;msDsÞ; ð86Þ
where mr 2 {0,1, . . . ,Mr � 1} and ms 2 {0, 1, . . . ,Ms � 1}. Here, the shift by Dr
2

avoids having fibers at the exact
edges of the shell, whereas the shift by Ds

2
is for notational consistency only.

As discussed in Sections 2 and 3.1, the elastic force density generated by the structure configuration is
defined in terms of a continuum of elastic fibers, and the curvilinear coordinates, (r, s), are chosen so that a
fixed value of r labels a particular fiber for all time t. So that each fiber forms a closed loop, X is taken to
be periodic in the s-coordinate direction. Note that s is not equal to arc length along the fibers. For this par-
ticular Lagrangian elastic force density mapping, no boundary conditions are imposed on the other bound-
aries of the curvilinear coordinate space.

The initial configuration of the viscoelastic body is given by the mapping
Xðr; s; 0Þ ¼ 1

2
;
1

2

� �
þ aþ c r � 1

2

� �� �
cosð2psÞ; bþ c r � 1

2

� �� �
sinð2psÞ

� �
; ð87Þ
with a = 0.2, b = 0.25, and c = 0.0625. This expression defines the initial configuration of each fiber to be an
ellipse, so that the initial configuration of the entire structure is a thick elliptical shell. The value of c deter-
mines the thickness of the shell. Note that c is a physical parameter and not a numerical parameter, i.e., c
is independent of the grid spacing.

In all computations, the uniform density of the fluid–structure system is taken to be q = 1, the uniform vis-
cosity is taken to be l = 0.005, and the initial velocity of the system is taken to be u(x, 0) ” 0. After being
released at t = 0, the shell undergoes damped oscillations and tends toward its resting configuration, a circular
shell. The computation is halted and convergence is assessed at t = 0.4. Using the fiber tensions specified in
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either Section 4.1 or Section 4.2, the shell will have approximately completed its first oscillation at this point in
the computation, and for both sets of material properties, the corresponding flows have Re 
 100.

In all cases, we employ a uniform timestep that is chosen so that the computed velocity always satisfies the
composite grid CFL condition for the CFL number C = 0.1, i.e.,
Dt < 0:1 min
‘2f0...‘maxg

h‘= max
ði;jÞ2level ‘

ðjun
i;jj; jvn

i;jjÞ: ð88Þ
This is a more severe restriction than our explicit treatment of the nonlinear advection term requires; however,
since we are treating the elastic force density in an explicit manner, the hyperbolic stability restriction is not the
only stability constraint that the timestep size must satisfy. Although Eq. (88) may not be sufficient to ensure
stability in the limit as h‘max ! 0, it appears to be adequate for the uniform and composite grids considered
here. To prevent the viscoelastic structure from escaping the finest level of the hierarchical grid in the adaptive
computations, we regrid the patch hierarchy every nregrid = 8 timesteps. (For the present adaptive version of
the immersed boundary method, adaptively regenerating the patch hierarchy once every nregrid = º1/C ß time-
steps is sufficiently frequent to prevent the structure from escaping the finest level of the hierarchy, where C is
the maximum CFL number.) For the following computations, Eq. (88) is satisfied for Dt ¼ 0:08=N ‘max , and this
choice generally appears to result in stable computations for the grid spacings and material parameters we
consider.

Below, we present empirical convergence rates for u, p, and X in appropriately defined discrete Lp norms for
p = 1,2, and1. For p = 1 and 2, the discrete Lp norm of a cell-centered scalar valued function defined on the
composite Cartesian grid, w, is given by
kwkp
p ¼

X‘max

‘¼0

X
valid ði;jÞ2level ‘

jwi;jj
ph3

‘ : ð89Þ
The discrete L1 norm of w is defined by
kwk1 ¼ max
‘2f0...‘maxg

max
valid ði;jÞ2level ‘

jwi;jj: ð90Þ
Note that these discrete norms are only defined in terms of those values of w in the valid region of each level in
patch hierarchy. Analogous definitions are employed for the discrete Lp norms of vector valued functions. For
W(r, s) = (W1(r, s),W2(r, s)), a vector valued function defined on the curvilinear mesh, the discrete Lp norm for
p = 1 and 2 is defined by
kWkp ¼
X

r;s

ðW 2
1ðr; sÞ þ W 2

2ðr; sÞÞ
p=2DrDs

 !1=p

: ð91Þ
Finally, the L1 norm of W(r, s) is defined by
kWk1 ¼ max
r;s
ðW 2

1ðr; sÞ þ W 2
2ðr; sÞÞ

1
2: ð92Þ
Since analytic solutions are not available for the present test cases, we compute estimates of the convergence
rates in a standard manner. In particular, for a computed quantity, w, let ep½w; N 0; L; r� denote the discrete Lp

norm of the difference in the approximation to w obtained when using an L-level hierarchical Cartesian grid
with an N0 · N0 base grid (and the corresponding curvilinear mesh and timestep) and the approximation to w
obtained when using an L-level hierarchical Cartesian grid with a 2N0 · 2N0 base grid (and the corresponding
curvilinear mesh and timestep), i.e.,
ep½w; N 0; L; r� ¼ kwN0 �Ið2N0;L;rÞ!ðN0;L;rÞw2N0kp; ð93Þ
where Ið2N0;L;rÞ!ðN0;L;rÞ denotes interpolation from finer to coarser L-level composite grids. An empirical esti-
mate for the convergence rate of w in this norm is given by
rp½w; N 0; L; r� ¼ log2

ep½w; N 0; L; r�
ep½w; 2N 0; L; r�

� �
: ð94Þ
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4.1. Tapered elastic stiffness

For the first set of material properties, we set the fiber tension, T, via
T ¼ rðjoX=osj; r; sÞ ¼ ð1þ sinð2pr � p=2ÞÞjoX=osj: ð95Þ
Recalling Eqs. (11)–(13), the resulting Lagrangian elastic force density is given by
F ¼ o

os
ðT sÞ ¼ ð1þ sinð2pr � p=2ÞÞ o

2X

os2
: ð96Þ
In the absence of sharp corners in the elastic fibers that comprise the shell, this Lagrangian force density
smoothly tapers to zero as r approaches 0 or 1, i.e., there is a continuous transition in material properties
at the fluid–structure interface. As long as the structure does not become too distorted, the resulting Cartesian
elastic force density, f, will remain a continuous function of x.

For these computations, we consider the performance of the uniform and adaptive schemes for the six-
point delta function, dIB

6h , only. (Note that in [3], we consider the performance of the uniform version of the
present scheme for several choices of dh.) We perform adaptive computations for two different refinement
ratios, namely r ¼ 2 and r ¼ 4. In each case, the hierarchical Cartesian grid consists of two levels (i.e., levels
‘ = 0 and 1). For comparison, we also perform a sequence of computations using a uniform Cartesian grid.
Table 1 summarizes the convergence results in the various discrete norms for u, p, and X at time t = 0.4. These
values are obtained via Eqs. (93) and (94). In the uniform grid case, the reported values in the discrete L1 and
L2 norms are identical to those reported in [3], except that in [3] the empirical convergence rates for the Carte-
sian grid velocity field were reported separately for each component of u. (Pointwise convergence rates were
not reported in our previous uniform grid study [3].)

From the presented data, it is clear that for both choices of r, better than second order convergence rates
are indicated for nearly all quantities over the range grid spacings considered. In particular, third order con-
vergence rates are observed for the pressure in most cases. Additionally, pointwise second order or nearly
second order rates are observed in most quantities, and pointwise third order convergence rates are
observed for the pressure. (Since we employ finite difference operators that suffer from localized reductions
in accuracy at coarse-fine interfaces, note that only first order pointwise convergence rates are expected for
sufficiently fine grid spacings.) Moreover, the results obtained by the adaptive scheme for a particular effec-
tive fine grid resolution appear to be substantially the same as those obtained by the non-adaptive scheme
on an equivalent uniform grid. In particular, at equivalent fine grid resolutions, the normed differences of
quantities from successive computations are largely the same, regardless of whether we have employed a
uniform grid or an adaptively refined grid. This indirectly suggests that the actual errors are similar in
all cases. (Particularly noteworthy is the fact that the norms of the differences in X obtained from subse-
quent computations appear to depend mainly on the value of N ‘max , indicating that the computed motion
of the viscoelastic structure is essentially the same for equivalent fine grid spacings.) Note, however, that
at equivalent fine grid resolutions, the coarse grid in the r ¼ 4 case is a factor of two coarser than the base
grid in the r ¼ 2 case.

Representative adaptive results for r ¼ 4 and N ‘max ¼ 512 are displayed in the left-hand columns of Figs. 4
and 5. Similar results were obtained for r ¼ 2. (See [3,27] for visualizations of the uniform grid results.)

4.2. Constant elastic stiffness

For the second set of material properties, we set the fiber tension, T, via
T ¼ joX=osj; ð97Þ

i.e., the stiffness of the fibers does not taper to zero at the edge of the shell. Recalling Eqs. (11)–(13), the result-
ing Lagrangian elastic force density is given by
F ¼ o

os
ðT sÞ ¼ o2X

os2
: ð98Þ



Table 1
Normed differences of the values of u, p, and X from successive computations, and the resulting empirical convergence rates, in the discrete
L1, L2, and L1 norms at time t = 0.4

N ‘max
Uniform r ¼ 2 r ¼ 4

Difference Rate Difference Rate Difference Rate

L1 difference in u at t = 0.4
64 1.0150e � 02 2.8166 1.0308e � 02 2.7522 1.0384e � 02 2.5696

128 1.4407e � 03 2.2434 1.5299e � 03 2.2962 1.7492e � 03 2.0057
256 3.0426e � 04 – 3.1149e � 04 – 4.3558e � 04 –

L2 difference in u at t = 0.4
64 1.2625e � 02 2.9082 1.2660e � 02 2.8484 1.2809e � 02 2.6667

128 1.6819e � 03 2.2904 1.7578e � 03 2.3110 2.0172e � 03 1.9670
256 3.4381e � 04 – 3.5423e � 04 – 5.1597e � 04 –

L1 difference in u at t = 0.4
64 6.3200e � 02 2.8288 6.2661e � 02 2.8076 6.3837e � 02 2.3286

128 8.8957e � 03 2.1722 8.9502e � 03 2.2061 1.2709e � 02 1.4773
256 1.9737e � 03 – 1.9396e � 03 – 4.5644e � 03 –

L1 difference in p at t = 0.4
64 4.0813e � 02 3.6165 4.0199e � 02 3.5986 3.7191e � 02 3.4758

128 3.3275e � 03 2.7233 3.3183e � 03 2.7886 3.3429e � 03 2.9206
256 5.0389e � 04 – 4.8026e � 04 – 4.4149e � 04 –

L2 difference in p at t = 0.4
64 1.0885e � 01 3.3407 1.0714e � 01 3.3198 1.0684e � 01 3.3277

128 1.0745e � 02 3.0064 1.0729e � 02 3.0216 1.0642e � 02 3.0667
256 1.3371e � 03 – 1.3212e � 03 – 1.2702e � 03 –

L1 difference in p at t = 0.4
64 9.5518e � 01 2.7797 9.4336e � 01 2.7549 9.4621e � 01 2.8068

128 1.3909e � 01 3.1454 1.3976e � 01 3.1546 1.3523e � 01 3.1496
256 1.5719e � 02 – 1.5694e � 02 – 1.5238e � 02 –

L1 difference in X at t = 0.4
64 2.8595e � 03 2.0497 2.8284e � 03 2.0364 2.8138e � 03 2.0274

128 6.9068e � 04 2.3244 6.8947e � 04 2.3234 6.9020e � 04 2.3266
256 1.3790e � 04 – 1.3775e � 04 – 1.3760e � 04 –

L2 difference in X at t = 0.4
64 3.2570e � 03 1.7552 3.2196e � 03 1.7435 3.2054e � 03 1.7388

128 9.6485e � 04 2.0251 9.6148e � 04 2.0230 9.6039e � 04 2.0334
256 2.3705e � 04 – 2.3657e � 04 – 2.3460e � 04 –

L1 difference in X at t = 0.4
64 8.4569e � 03 1.2964 8.3929e � 03 1.2954 8.3630e � 03 1.3049

128 3.4432e � 03 1.7644 3.4195e � 03 1.7585 3.3848e � 03 1.8066
256 1.0135e � 03 – 1.0106e � 03 – 9.6763e � 04 –

In these computations, the stiffness of the elastic fibers comprising the shell tapers to zero at the edges of the structure, so that there is a
continuous transition in material properties at the fluid–structure interface. The physical domain is described by either a uniform or an
adaptively refined Cartesian grid with an effective N ‘max

� N ‘max
grid spacing on the finest level of the hierarchical grid. All adaptive

computations employ a total of two levels, i.e., ‘max = 1, whereas in the uniform grid case, ‘max = 0.
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In this case, the Cartesian elastic force density is only a piecewise continuous function of x due to a sharp tran-
sition in material properties at the fluid–structure interface.

As in the previous subsection, for these computations, we consider the performance of the scheme only for
the six-point delta function, dIB

6h . We again perform adaptive computations for refinement ratios r ¼ 2 and
r ¼ 4. In each case, the hierarchical Cartesian grid consists of two levels (i.e., levels ‘ = 0 and 1). We also again



Fig. 4. Location of an anisotropic incompressible viscoelastic shell with tapered (left-hand column) and constant (right-hand column)
elastic stiffnesses at (a) t = 0.08, (b) t = 0.20, and (c) t = 0.32 for an adaptive computation using dIB

6h . In all cases, level 0 consists of a single
128 · 128 grid patch, and the refinement ratio is r ¼ 4. The volume occupied by the shell is indicated in gray, and fine grid patches are
indicated by thick black lines. Note that the refined regions in the Cartesian grid are placed adaptively and cover the elastic structure
completely.

36 B.E. Griffith et al. / Journal of Computational Physics 223 (2007) 10–49
perform a sequence of computations on a uniform grid for comparison. Table 2 summarizes the convergence
results in the various discrete norms for u, p, and X at time t = 0.4. Again, note that in the uniform grid case,
the reported values in the discrete L1 and L2 norms are identical to those reported in [3], except that in [3] the
empirical convergence rates for the Cartesian grid velocity field were reported separately for each component
of u. (Pointwise convergence rates were not reported in our previous uniform grid study [3].)

From the presented data, it is clear that for the range of grid spacings considered, the adaptive scheme
again achieves convergence rates that are essentially the same as those observed for the uniform discretization,
and for both choices of r, the results obtained by the adaptive scheme for a particular effective fine grid res-
olution appear to be substantially the same as those obtained by the non-adaptive scheme on an equivalent



Fig. 5. Similar to Fig. 4, but here displaying computed values of p for a shell with tapered (left-hand column) and constant (right-hand
column) elastic stiffnesses at (a) t = 0.08, (b) t = 0.20, and (c) t = 0.32. Pressure contours are indicated by thin black lines, and fine grid
patches are indicated by thick black lines. Note that the variation in the pressure is relatively small in the unrefined portions of the
hierarchical Cartesian grid. Also note that the essentially radial pressure gradient across the boundary in the case of constant elastic
stiffness.
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uniform grid. In this case, however, the empirically observed convergence rates are generally not as high as
when the stiffness of the elastic fibers comprising the shell tends to zero near the edge of the structure. This
is not surprising since, unlike the tapered case, the Cartesian force density in this case is in fact discontinuous.
Nonetheless, nearly second order rates are observed in the discrete L1 and L2 norms in most cases, and first
order or better pointwise convergence rates are observed in all cases.

Representative adaptive results for r ¼ 4 and N ‘max ¼ 512 are displayed in the right-hand columns of Figs. 4
and 5. Similar results were obtained for r ¼ 2. (See [3,27] for visualizations of the uniform grid results.)

5. Simulating cardiac blood-muscle-valve mechanics

In this section, we briefly present simulation and code performance results obtained from the application
of the adaptive methodology described in the present work to the McQueen/Peskin model of cardiac



Table 2
Normed differences of the values of u, p, and X from successive computations, and the resulting empirical convergence rates, in the discrete
L1, L2, and L1 norms at time t = 0.4

N ‘max
Uniform r ¼ 2 r ¼ 4

Difference Rate Difference Rate Difference Rate

L1 difference in u at t = 0.4
64 8.8197e � 03 1.6392 9.0270e � 03 1.6614 8.9815e � 03 1.6214

128 2.8315e � 03 1.6232 2.8537e � 03 1.6464 2.9191e � 03 1.6877
256 9.1911e � 04 – 9.1155e � 04 – 9.0617e � 04 –

L2 difference in u at t = 0.4
64 1.0044e � 02 1.7023 1.0197e � 02 1.7143 1.0231e � 02 1.6623

128 3.0863e � 03 1.6033 3.1077e � 03 1.6230 3.2325e � 03 1.6306
256 1.0158e � 03 – 1.0089e � 03 – 1.0439e � 03 –
L1 difference in u at t = 0.4
64 4.3920e � 02 1.3837 4.4135e � 02 1.3942 4.4539e � 02 1.1489

128 1.6831e � 02 1.4529 1.6791e � 02 1.4650 2.0086e � 02 1.1001
256 6.1481e � 03 – 6.0825e � 03 – 9.3700e � 03 –

L1 difference in p at t = 0.4
64 1.3798e � 02 1.7443 1.3690e � 02 1.7219 1.3359e � 02 1.6981

128 4.1186e � 03 1.8255 4.1503e � 03 1.8989 4.1170e � 03 1.9865
256 1.1620e � 03 – 1.1129e � 03 – 1.0389e � 03 –

L2 difference in p at t = 0.4
64 2.8840e � 02 1.2875 2.8632e � 02 1.2866 2.9261e � 02 1.3165

128 1.1815e � 02 1.5641 1.1737e � 02 1.5685 1.1748e � 02 1.5721
256 3.9956e � 03 – 3.9571e � 03 – 3.9512e � 03 –

L1 difference in p at t = 0.4
64 2.0990e � 01 0.9055 2.0998e � 01 0.9122 2.1377e � 01 0.9327

128 1.1205e � 01 1.1194 1.1158e � 01 1.1063 1.1199e � 01 1.0483
256 5.1577e � 02 – 5.1827e � 02 – 5.4149e � 02 –

L1 difference in X at t = 0.4
64 1.5062e � 03 1.5261 1.4935e � 03 1.5218 1.4981e � 03 1.5218

128 5.2298e � 04 2.0493 5.2011e � 04 2.0681 5.2174e � 04 2.1183
256 1.2635e � 04 – 1.2403e � 04 – 1.2017e � 04 –

L2 difference in X at t = 0.4
64 1.6878e � 03 1.3427 1.6749e � 03 1.3377 1.6808e � 03 1.3381

128 6.6546e � 04 1.7700 6.6268e � 04 1.7743 6.6483e � 04 1.7804
256 1.9512e � 04 – 1.9372e � 04 – 1.9354e � 04 –

L1 difference in X at t = 0.4
64 3.8333e � 03 0.9472 3.8137e � 03 0.9367 3.8423e � 03 0.9357

128 1.9881e � 03 1.1984 1.9924e � 03 1.1954 2.0087e � 03 1.1632
256 8.6631e � 04 – 8.6997e � 04 – 8.9688e � 04 –

In these computations, the stiffness of the elastic fibers comprising the shell is constant throughout the structure, so that there is a sharp
transition in material properties at the fluid–structure interface. The physical domain is described by either a uniform or an adaptively
refined Cartesian grid with an effective N ‘max

� N ‘max
grid spacing on the finest level of the hierarchical grid. All adaptive computations

employ a total of two levels, i.e., ‘max = 1, whereas in the uniform grid case, ‘max = 0.
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mechanics [6–9]. This three-dimensional model includes representations of all of the major features of the
heart and nearby great vessels, including the four chambers of the heart, i.e., the left and right ventricles
and atria; the two atrioventricular (inflow) valves, including the supporting fans of chordae tendineae
and papillary muscles; the two arterial (outflow) valves; the veins that return blood to the atria, i.e., the
pulmonary veins and the superior and inferior vena cavae; and finally the major arteries that carry the
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blood ejected by the ventricles, i.e., the ascending aorta and the main pulmonary artery. It is important to
note that the inflow and outflow vessels are not connected to a detailed model of the circulatory system.
Instead, the great vessels (including the ascending aorta, the pulmonary artery, the pulmonary veins, and
the superior and inferior vena cavae) all have hemispherically capped blind ends. Fluid sources and sinks
are supplied in or near these blind ends to establish realistic pressure loads and thereby simulate connections
to the rest of the circulation. (See [27] for a complete description of the changes to the continuous and dis-
crete equations of motion that are necessitated by the introduction of fluid sources and sinks that are inter-
nal to the physical domain.)

In the continuum limit, many of the structures of the model heart, including the heart valve leaflets and the
thin-walled right ventricle, are described as thin elastic boundaries. An important exception is the muscular
left ventricular wall, which is described as an anisotropic incompressible viscoelastic shell. Note that a
cross-section of the thick left ventricular wall is analogous to a two-dimensional viscoelastic shell like those
considered in Section 4. In particular, at the equatorial plane of the model heart, i.e., where the ventricles
achieve their maximum diameter, the thickness of the model left ventricular wall varies from approximately
0.59 cm at the interventricular septum to approximately 0.78 cm at the posterior wall. As in the two-dimen-
sional case considered in Section 4, the left ventricular wall has a Poisson ratio of 0.5, and the mass density
and viscosity of the left ventricle are presently identical to the surrounding fluid, i.e., the blood. Additional
viscous effects within the cardiac musculature are no doubt anisotropic as a result of the well defined muscle
Fig. 6. The fiber structure of the model heart prior to contraction, as viewed from the front of the heart. On the left side of the heart
(which appears on the right side of the figure), the four pulmonary veins supply blood to the left atrium, which in turn empties into the left
ventricle through the mitral valve (see Figs. 7, 9, and 10). The muscular left ventricle ejects blood through the aortic valve into the
ascending aorta. On the right side of the heart (which appears on the left side of the figure), the superior and inferior vena cavae return
blood to the right atrium, which in turn empties into the right ventricle through the tricuspid valve (see Fig. 8). The thin-walled right
ventricle ejects blood through the pulmonic valve into the main pulmonary artery. Note that in the model, the inflow and outflow vessels
all have blind ends, but sources and sinks are provided to establish realistic pressure loads on each side of the heart. (In the present figure
and all subsequent figures, only a subset of the model muscle fibers are displayed, whereas all of the model collagen fibers that comprise the
heart valve leaflets are shown.) Note that in the simulation results presented in Figs. 6–12, we employ a two-level hierarchically composed
Cartesian grid with a refinement ratio of r ¼ 4. The global coarse grid (level 0) is a uniform 323 grid, and the grid spacing on the finest level
is h‘max ¼ 0:20405 cm, which would correspond to that of a uniform 1283 grid.
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fiber direction that exists at each point of the heart wall. This fiber orientation is already accounted for in our
anisotropic model of the elasticity of the heart wall, and it will not be difficult in future work to generalize this
anisotropic elasticity model to include fiber-aligned anisotropic viscous effects. At present, however, we only
include the isotropic viscosity of the background fluid that is everywhere in an immersed boundary
computation.

When discretized, each of the structures of the model is described by a system of one-dimensional elastic
fibers: in the case of the valves, the fibers mainly correspond to passive collagen fibers; in the great vessels,
they correspond to smooth muscle tissue; and in the myocardium, they correspond to active muscle fibers that
possess time-dependent contractile properties. (As the Lagrangian mesh is refined, however, note that this dis-
crete representation approaches the continuous limit described above.) Although a complete description of the
elastic properties of these structures is beyond the scope of the present work, most of the forces generated by
the elasticity of the model heart are computed in the manner described in Sections 3 and 4, although the fiber
tension is determined differently. In particular, the elastic parameters of the fibers, such as the fiber stiffnesses
and resting lengths, vary both temporally (to simulate active, contractile muscle) and spatially (to model the
delay in contraction between the atria and the ventricles). Nonetheless, implementing the elastic properties
specified by the model requires no major changes to the presented numerical scheme because at each timestep
the elastic parameters are constant and known. Note that more complete descriptions of the model are avail-
Fig. 7. A prominent vortex is shed from the mitral valve leaflets and migrates to the interior of the left ventricle of the model heart during
atrial systole. Note that the present view is from the front of the model heart, so that the left ventricle appears on the right side of the
figure. The flow of blood within the heart is indicated by passive fluid markers. The present positions of the fluid markers are shown, and
attached to each marker is a dark tail that indicates the recent trajectory of that marker. A superimposed arrow indicates the direction of
fluid flow around the vortex. The fibers that comprise the model heart, including the muscular heart wall, the thin valve leaflets, and the
great vessels, appear in gray. Again, note that only a subset of the model fibers are displayed in each figure.
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able from [6–8,27], and that a full discussion of cardiac physiology can be obtained from any text on medical
physiology, e.g., Guyton and Hall [46].

In the present computations, the physical domain is described as a periodic box that has a length of
26.118 cm on each side. (For comparison, note that the circumference of the human mitral valve ring is
approximately 10 cm and its diameter is approximately 3.2 cm.) First, we simulate a complete cardiac cycle
using a two-level locally refined grid in which the coarse level (level 0) is a uniform grid with 32 grid cells in
each coordinate direction, and the fine level (level 1) is adaptively generated with a refinement ratio of
r ¼ 4. Results from this simulation are displayed in Figs. 6–12. For timing purposes, we also compare
the performance of the adaptive immersed boundary method in three cases: (1) a uniform 1283 Cartesian
grid, (2) a two-level locally refined Cartesian grid with a coarse grid resolution of 643 and a refinement
ratio of r ¼ 2, and (3) a two-level locally refined Cartesian grid with a coarse grid resolution of 323 and
a refinement ratio of r ¼ 4. Note that in all cases, the grid spacing for the finest level (i.e., on level 0 in
the uniform grid case and on level 1 in the locally refined cases) corresponds to that of a uniform grid with
128 grid cells in each coordinate direction, i.e., the fine grid spacing is h‘max ¼ 0:20405 cm. As in the two-
dimensional computations of Section 4, Cartesian grid cells are tagged for refinement when they contain
any curvilinear mesh nodes, and consequently the entire structure of the heart is embedded within the finest
level of the hierarchical grid. In an attempt to ensure that any vortices shed from the free edges of the valve
leaflets remain within the finest level of the composite grid, cells are also tagged for refinement when the
magnitude of the vorticity exceeds a specified relative tolerance. In particular, cell (i, j,k) is tagged for
refinement whenever
Fig. 8.
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where x = $ · u is the vorticity.
A prominent vortex is shed from the tricuspid valve leaflets and migrates to the interior of the right ventricle during atrial systole.
hat in the present figure, the heart is viewed from its side, so that the right ventricle appears in the foreground. As before, the flow of
within the model heart is indicated by passive fluid markers, and a superimposed arrow indicates the direction of fluid flow. The
on of swirl is such that when the right ventricle contracts, fluid is already moving towards the main pulmonary artery.



Fig. 9. A prominent clockwise (in the present view) vortex forms in the left ventricle about the jet of inflow through the mitral valve during
atrial systole and prior to ventricular systole. The present view looks up from the left ventricle, through the open mitral valve, and into the
left atrium. As before, the flow of blood within the model heart is indicated by passive fluid markers, and once again, a superimposed
arrow indicates the direction of fluid flow. In the present figure, however, only the fibers that comprise the mitral valve are shown. Note
that this particular feature of the flow did not appear in earlier simulations [7–9], and the physiological significance of this particular
swirling motion, if any, is presently unknown.
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The timestep size is determined to ensure that the CFL number never exceeds 0.1, and hence it suffices to
regrid the patch hierarchy every nregrid = 10 timesteps. To allow for more direct comparison with earlier com-
putations performed by McQueen and Peskin, the present simulation employs the four-point delta function,
dIB

4h , which is defined in e.g. [30].
Although the simulation results obtained by the present methodology show good qualitative agreement

with results obtained by earlier versions of the immersed boundary method [7–9], there are two notable
differences between the present computational results and earlier ones. First, the present methodology
appears to provide dramatically enhanced boundary layer resolution when compared to earlier versions
of the immersed boundary method. This is indicated by the flow through the arterial valves (i.e., the aortic
and pulmonic valves). In particular, to prevent failure of the outflow valves during the initial portion of the
simulation when the heart is first pressurized, we found that it was necessary to narrow the gaps between
the leaflets of both the model aortic and pulmonic valves. The necessity of gaps between the valve leaflets
may strike the reader as non-physical; however, as we briefly describe, gaps are necessary in all cases: Note
that the interpolated velocity field obtained via the regularized delta function is continuous, so that if the
physical positions of two material points happen to coincide at some time t = T, they necessarily coincide
for all time t P T. Thus, in the absence of gaps between the valve leaflets, it would not be possible for the
valves to open. When the valve spacings employed in [7–9] were used with the present version of the
immersed boundary method, regurgitrant fluid jets formed near the tips of the valves leaflets, resulting
in valve failure. It is important to emphasize that the original wide spacings yielded competent valves



Fig. 10. The aortic and mitral valves during ventricular systole. As before, the flow of blood within the model heart is indicated by passive
fluid markers, but here only the fibers that comprise the model aortic and mitral valves are displayed. Notice that the mitral valve prevents
back-flow during ventricular ejection.
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for earlier versions of the method. The fact that valve spacings that yielded competent valves via earlier
versions of the method yield leaky valves for the present numerical scheme indicates that the present meth-
odology provides enhanced boundary layer resolution compared to earlier versions of the immersed bound-
ary method.

The improvement in boundary layer resolution yielded by the present methodology is more striking
when we compare the Cartesian grid spacings employed in the present simulation with those used in ear-
lier studies. In the present results, recall that the grid spacing on the finest level of the composite Cartesian
grid is h‘max ¼ 0:20405 cm. In comparison, the earlier uniform grid simulations [7–9] that made use of ear-
lier versions of the immersed boundary method required the use of a finer uniform grid spacing in order
to obtain any flow through the arterial valve rings, even in the absence of the arterial valve leaflets! In
particular, the earlier uniform grid simulations, the uniform Cartesian grid spacing was hold = 0.13603 cm,
i.e., hold ¼ 2

3
h‘max . The value for hold was approximately the coarsest value that allowed for flow through the

arterial valves via the older numerical methods. (In fact, with the present methodology, we observe flow
the arterial valves for even coarser Cartesian grid spacings than those employed in the presently reported
simulation results.) In the present results, the distance from the tips of the aortic valve leaflets to the cen-
ter of the aortic valve has been reduced by 50%, and the distance from the tips of the pulmonic valve
leaflets to the center of the pulmonic valve has been reduced by 87.5%. With the present version of
the immersed boundary method, these gaps must be further reduced to obtain competent valves for finer
Cartesian grid spacings. Although these differences in the performance of the present and earlier versions
of the immersed boundary method are quite dramatic, we believe that they can be attributed in large part
to the more sophisticated treatment of the nonlinear advection terms employed in the present version of
the method.

The second major difference in the dynamics between the present and earlier simulation results is the
appearance of a prominent vortex that swirls about the jet of inflow from the mitral valve (see
Fig. 10). This vortex forms within the model left ventricle after the onset of atrial systole but before



Fig. 11. Volume rendering of the pressure in the model heart during atrial systole and the corresponding locally refined Cartesian
grid. Notice that the use of adaptive refinement allows us to employ in an efficient manner a computational domain that is physically
larger than that used in earlier uniform grid computations, thereby deceasing the interaction between periodic copies of the model
heart. Note that in the simulation results presented in Figs. 6–12, we employ a hierarchically composed Cartesian grid comprised of
two levels with a refinement ratio of r ¼ 4. The global coarse grid (level 0) is a 323 uniform grid, and the grid spacing on the finest
level is h‘max ¼ 0:20405 cm. In the present figure, borders of the fine level 1 grid patches appear as thick black lines, whereas the
borders of the computational domain are indicated by thin black lines. The coarse level 0 grid patches are not shown. To allow the
right ventricle to appear clearly in the figure, note that the range of displayed pressure values does not include the full range of
computed values.
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the onset of ventricular systole. Similar flow patterns were not observed in the earlier simulations. At the
present time, the physiological significance of this flow pattern, if any, is unknown. Although it is possible
that similar swirling flow patterns occur in real hearts, it is also possible that this flow pattern is simply a
consequence of a non-physiological feature of the present model or of under-resolution of the flow. The
present simulation results are inadequate to resolve such questions, and clearly this issue warrants further
investigation.

To demonstrate the potential of our adaptive scheme to reduce the computational resources required to
simulate cardiac fluid mechanics, we also performed the first 100 timesteps of the simulation using 8, 16,
32, and 64 processors for both uniform and locally refined Cartesian grids, although we note that our imple-
mentation has not yet been fully optimized for performance. These computations were performed on the Mul-
tiprogrammatic and Institutional Computing Capability Resource (MCR) at Lawrence Livermore National
Laboratory. (As presently configured, MCR is comprised of 1152 compute nodes, each consisting of two Intel
2.4 GHz Pentium 4 Xeon processors and 4 GB of memory.) Parallel timings are reported in Table 3. Notice
that in all cases, the wall clock time required to compute a single timestep is significantly decreased by the use
of adaptive mesh refinement. Moreover, the use of local refinement allows us to obtain good performance on



Fig. 12. Similar to Fig. 11, but here showing only the portion of the computational domain that is in the immediate vicinity of the model
heart.

Table 3
Wall clock time (in seconds) required to perform a single computed timestep in the three-dimensional simulations of cardiac fluid
mechanics

# of Processors Uniform r ¼ 2 r ¼ 4

Time per
timestep

Adaptive
speedup

Time per
timestep

Adaptive
speedup

Time per
timestep

Adaptive
speedup

8 94.46 – 44.34 2.13 12.53 7.54
16 57.53 – 10.03 5.74 7.61 7.56
32 41.96 – 7.44 5.64 5.81 7.22
64 10.74 – 7.40 1.45 6.74 1.59

Timings are obtained as averages over the first 100 timesteps in the simulation. In these computations, the physical domain is described
either by a uniform 128 · 128 · 128 grid, or by an adaptively refined grid in which the grid spacing on the finest level corresponds to that of
a 1283 uniform grid. All adaptive computations employ a total of two levels, so that for r ¼ 2, the global (level 0) coarse grid is a 643

uniform grid, whereas for r ¼ 4, the global coarse grid is a 323 uniform grid. Adaptive speedup is computed as the wall clock time required
by the non-adaptive computation divided by the time required by the adaptive computation. Thus, an adaptive speedup of 2 would
indicate that the adaptive computation ran twice as fast as the non-adaptive computation. (Note that the reported speedup numbers
account only for the effect of adaptivity. In particular, they do not account for the effect of parallelization, i.e., adaptive speedup should not
be confused with parallel speedup.) It seems likely that the 8, 16, and 32 processor uniform grid timings, as well as the 8 processor adaptive
timings for r ¼ 2, are greatly influenced by memory caching effects. Consequently, the adaptive speedup results are likely most repre-
sentative for the 64 processor case. Nonetheless, notice that with the present implementation and parallel platform, the uniform grid
computation essentially requires 64 processors, whereas good performance is obtained in the adaptive case for as few as 16 processors.
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as few as 16 processors, whereas reasonable performance in the uniform grid case is only obtained with 64
processors (likely as a result of memory cache effects). Again, however, we note that the present implementa-
tion has not yet been optimized to maximize parallel efficiency.
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6. Conclusions

In the present work, we have introduced a formally second order accurate adaptive version of the immersed
boundary method, examined the performance of this scheme for a prototypical fluid–structure interaction
problem, and presented results from the application of this adaptive method to the simulation of cardiac
blood-muscle-valve mechanics. This new algorithm is an extension of the uniform grid method described in
[3], and both the present adaptive method and its uniform grid counterpart are differentiated from most pre-
vious versions of the immersed boundary method by their inclusion of several numerical methods intended to
reduce the occurrence of non-physical oscillations in the computed dynamics. In particular, we use a strong
stability-preserving Runge–Kutta method for the time integration of the structure configuration, an implicit
L-stable discretization of the viscous terms in the momentum equation, and a second order Godunov method
for the explicit treatment of the nonlinear terms in the momentum equation. We also employ a new hybrid
approximate projection method for the incompressible Navier–Stokes equations, a method which has been
demonstrated to reduce the occurrence of oscillations in the computed pressure for both uniform and adap-
tively refined computations [3,27]. To date, we have used this new adaptive hybrid projection method only in
the context of the immersed boundary method, but the same algorithm could be used in any application area
that would benefit from a locally adaptive projection scheme.

By considering fluid–structure interaction problems which possess sufficiently smooth solutions, actual sec-
ond order convergence rates were demonstrated in our numerical tests of the method for moderate Reynolds
number flows. Unlike most previous convergence studies for the immersed boundary method, however, we
did not consider the interaction of a true interface and an incompressible fluid. When the immersed boundary
method is applied to such problems, second order convergence rates are not observed because of the inability
of the method to resolve accurately the discontinuities in the pressure and in the normal derivative of the
velocity across the interface. We avoided these discontinuities by considering the interaction of an anisotropic
incompressible viscoelastic shell of finite thickness and an incompressible fluid, but note that global second
order or nearly second order convergence rates were observed not only for the case that there is a smooth
transition in material properties at the fluid–structure interface but also for the case in which there is a sharp

transition in material properties. Such problems are in some sense not as difficult as true interface problems;
nonetheless, they are relevant to many application areas where the immersed boundary method is used. A
particularly relevant example is the model of the heart and nearby great vessels we employ to simulate cardiac
blood-muscle-valve mechanics (see Figs. 6–12 and also [6–9]). Although this model uses thin elastic bound-
aries to describe the heart valve leaflets, the description of the muscular left ventricular wall is that of an
incompressible viscoelastic shell – albeit one with complex, time-dependent, and highly anisotropic elastic
properties.

In the present work, we demonstrated for a two-dimensional test problem that our adaptive scheme pro-
duces results that are substantially the same as those obtained by the equivalent uniform grid method (i.e.,
results that are largely identical to those obtained on a uniform grid with resolution that is equal to the highest
resolution employed in the adaptive computation). In particular, the adaptive scheme was demonstrated to
yield convergence rates that were virtually identical to those produced by the equivalent uniform grid method.
Moreover, we found that the adaptive method produced dynamics that were essentially the same as those pro-
duced by the equivalent non-adaptive scheme. This is not a surprise, perhaps, since in the test problems con-
sidered, the dominant errors in the computed solutions appear to be localized near the fluid–structure
interface. In such situations, the least resolved portions of the solution will always be embedded in the finest
level of the adaptively refined grid and will generally lie away from coarse-fine interfaces. Nonetheless, this
result has important practical implications, since it indicates that for problems with localized fine scale fea-
tures, it may be possible to obtain well resolved simulation results by adaptively deploying very high spatial
resolution in only a limited portion of the computational domain.

We also presented simulation results obtained by applying the present adaptive method to the McQueen/
Peskin model of cardiac mechanics. Timing results obtained for these simulations demonstrate that the use of
adaptive mesh refinement reduces the computational resources required to perform simulations of cardiac
blood-muscle-valve mechanics. These simulation results also indicate that the new methodology provides dra-
matically enhanced boundary layer resolution compared to earlier versions of the immersed boundary
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method. Additionally, new features were observed in the flow patterns in the vicinity of the mitral valve. In
both the present and earlier results, a prominent vortex is shed from the mitral valve leaflets and migrates
to the interior of the left ventricle. A notable difference between the present simulation results and earlier ones,
however, is the appearance in the present results of an additional vortex that swirls about the jet of inflow
through the mitral valve prior to ventricular contraction. The physiological significance of this swirling motion
is presently unknown, and it may be the product of non-physiological features of the present model heart or of
inadequate spatial resolution. Alternatively, this could be our first glimpse of a physiological flow pattern that
impacts mitral valve function. In any case, the resolution of this issue is beyond the scope of the present work
and clearly merits further investigation.

Finally, we note that in the present work we have not described an important aspect of our methodology,
namely the parallel implementation of this new adaptive immersed boundary method. This topic is
addressed in [27]. We note here, however, that the parallel implementation relies on the SAMRAI (Struc-
tured Adaptive Mesh Refinement Applications Infrastructure) object-oriented C++ framework which is
developed at the Center for Applied Scientific Computing at Lawrence Livermore National Laboratory
[47–50], the PETSc (Portable, Extensible Toolkit for Scientific Computation) library which is developed
at the Mathematics and Computer Science Division at Argonne National Laboratory [51–53], and parallel
multigrid solvers that are developed as part of the hypre project at the Center for Applied Scientific Com-
puting at Lawrence Livermore National Laboratory [54,55]. Although we provide preliminary timing results
in Section 5, a more complete examination of the performance of our parallel implementation remains
future work.
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